PurposeExposures early in life, beginning in utero, have long-term impacts on mental and physical health. The ECHO prenatal and early childhood pathways to health consortium (ECHO-PATHWAYS) was established to examine the independent and combined impact of pregnancy and childhood chemical exposures and psychosocial stressors on child neurodevelopment and airway health, as well as the placental mechanisms underlying these associations.ParticipantsThe ECHO-PATHWAYS consortium harmonises extant data from 2684 mother–child dyads in three pregnancy cohort studies (CANDLE [Conditions Affecting Neurocognitive Development and Learning in Early Childhood], TIDES [The Infant Development and Environment Study] and GAPPS [Global Alliance to Prevent Prematurity and Stillbirth]) and collects prospective data under a unified protocol. Study participants are socioeconomically diverse and include a large proportion of Black families (38% Black and 51% White), often under-represented in research. Children are currently 5–15 years old. New data collection includes multimodal assessments of primary outcomes (airway health and neurodevelopment) and exposures (air pollution, phthalates and psychosocial stress) as well as rich covariate characterisation. ECHO-PATHWAYS is compiling extant and new biospecimens in a central biorepository and generating the largest placental transcriptomics data set to date (N=1083).Findings to dateEarly analyses demonstrate adverse associations of prenatal exposure to air pollution, phthalates and maternal stress with early childhood airway outcomes and neurodevelopment. Placental transcriptomics work suggests that phthalate exposure alters placental gene expression, pointing to mechanistic pathways for the developmental toxicity of phthalates. We also observe associations between prenatal maternal stress and placental corticotropin releasing hormone, a marker of hormonal activation during pregnancy relevant for child health. Other publications describe novel methods for examining exposure mixtures and the development of a national spatiotemporal model of ambient outdoor air pollution.Future plansThe first wave of data from the unified protocol (child age 8–9) is nearly complete. Future work will leverage these data to examine the combined impact of early life social and chemical exposures on middle childhood health outcomes and underlying placental mechanisms.
Individual differences in cognition during childhood are associated with important social, physical, and mental health outcomes in adolescence and adulthood. Given that cortical surface arealization during development reflects the brain's functional prioritization, quantifying variation in the topography of functional brain networks across the developing cortex may provide insight regarding individual differences in cognition. We test this idea by defining personalized functional networks (PFNs) that account for interindividual heterogeneity in functional brain network topography in 9-10 year olds from the Adolescent Brain Cognitive Development Study. Across matched discovery (n=3,525) and replication (n=3,447) samples, the total cortical representation of fronto-parietal PFNs positively correlated with general cognition. Cross-validated ridge regressions trained on PFN topography predicted cognition across domains, with prediction accuracy increasing along the cortex's sensorimotor-association organizational axis. These results establish that functional network topography heterogeneity is associated with individual differences in cognition before the critical transition into adolescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.