We present a combined tomographic weak gravitational lensing analysis of the Kilo Degree Survey (KV450) and the Dark Energy Survey (DES-Y1). We homogenize the analysis of these two public cosmic shear datasets by adopting consistent priors and modeling of nonlinear scales, and determine new redshift distributions for DES-Y1 based on deep public spectroscopic surveys. Adopting these revised redshifts results in a 0.8σ reduction in the DES-inferred value for S8, which decreases to a 0.5σ reduction when including a systematic redshift calibration error model from mock DES data based on the MICE2 simulation. The combined KV450+DES-Y1 constraint on S8 = 0.762−0.024+0.025 is in tension with the Planck 2018 constraint from the cosmic microwave background at the level of 2.5σ. This result highlights the importance of developing methods to provide accurate redshift calibration for current and future weak-lensing surveys.
Feedback processes from baryons are expected to strongly affect weak-lensing observables of current and future cosmological surveys. In this paper we present a new parametrisation of halo profiles based on gas, stellar, and dark matter density components. This parametrisation is used to modify outputs of gravity-only N -body simulations (following the prescription of Schneider and Teyssier [1]) in order to mimic baryonic effects on the matter density field. The resulting baryonic correction model relies on a few well motivated physical parameters and is able to reproduce the redshift zero clustering signal of hydrodynamical simulations at two percent accuracy below k ∼ 10 h/Mpc. A detailed study of the baryon suppression effects on the matter power spectrum and the weak lensing shear correlation reveals that the signal is dominated by two parameters describing the slope of the gas profile in haloes and the maximum radius of gas ejection. We show that these parameters can be constrained with the observed gas fraction of galaxy groups and clusters from X-ray data. Based on these observations we predict a beyond percent effect on the power spectrum above k = 0.2 − 1.0 h/Mpc with a maximum suppression of 15-25 percent around k ∼ 10 h/Mpc. As a result, the weak lensing angular shear power spectrum is suppressed by 15-25 percent at scales beyond ∼ 100 − 600 and the shear correlations ξ + and ξ − are affected at the 10-25 percent level below 5 and 50 arc-minutes, respectively. The relatively large uncertainties of these predictions are a result of the poorly known hydrostatic mass bias of current X-ray observations as well as the generic difficulty to observe the low density gas outside of haloes. arXiv:1810.08629v4 [astro-ph.CO] 1 May 2019 1 www.darkenergysurvey.org 2 www.lsst.org/lsst 3 sci.esa.int/euclid
Accurate cosmology from upcoming weak lensing surveys relies on knowledge of the total matter power spectrum at percent level at scales k < 10 h/Mpc, for which modelling the impact of baryonic physics is crucial. We compare measurements of the total matter power spectrum from the Horizon cosmological hydrodynamical simulations: a dark matter-only run, one with full baryonic physics, and another lacking Active Galactic Nuclei (AGN) feedback. Baryons cause a suppression of power at k ≃ 10 h/Mpc of < 15% at z = 0, and an enhancement of a factor of a few at smaller scales due to the more efficient cooling and star formation. The results are sensitive to the presence of the highest mass haloes in the simulation and the distribution of dark matter is also impacted up to a few percent. The redshift evolution of the effect is non-monotonic throughout z = 0 − 5 due to an interplay between AGN feedback and gas pressure, and the growth of structure. We investigate the effectiveness of an analytic "baryonic correction model" in describing our results. We require a different redshift evolution and propose an alternative fitting function with 4 free parameters that reproduces our results within 5%. Compared to other simulations, we find the impact of baryonic processes on the total matter power spectrum to be smaller at z = 0. Correspondingly, our results suggest that AGN feedback is not strong enough in the simulation. Total matter power spectra from the Horizon simulations are made publicly available at https://www.horizon-simulation.org/catalogues.html.
This work investigates the alignment of galactic spins with the cosmic web across cosmic time using the cosmological hydrodynamical simulation Horizon-AGN. The cosmic web structure is extracted via the persistent skeleton as implemented in the DISPERSE algorithm. It is found that the spin of low-mass galaxies is more likely to be aligned with the filaments of the cosmic web and to lie within the plane of the walls while more massive galaxies tend to have a spin perpendicular to the axis of the filaments and to the walls. The mass transition is detected with a significance of 9 sigmas. This galactic alignment is consistent with the alignment of the spin of dark haloes found in pure dark matter simulations and with predictions from (anisotropic) tidal torque theory. However, unlike haloes, the alignment of low-mass galaxies is weak and disappears at low redshifts while the orthogonal spin orientation of massive galaxies is strong and increases with time, probably as a result of mergers. At fixed mass, alignments are correlated with galaxy morphology: the high-redshift alignment is dominated by spiral galaxies while elliptical centrals are mainly responsible for the perpendicular signal. These predictions for spin alignments with respect to cosmic filaments and unprecendently walls are successfully compared with existing observations. The alignment of the shape of galaxies with the different components of the cosmic web is also investigated. A coherent and stronger signal is found in terms of shape at high mass. The two regimes probed in this work induce competing galactic alignment signals for weak lensing, with opposite redshift and luminosity evolution. Understanding the details of these intrinsic alignments will be key to exploit future major cosmic shear surveys like Euclid or LSST.
The intrinsic alignments of galaxies are recognised as a contaminant to weak gravitational lensing measurements. In this work, we study the alignment of galaxy shapes and spins at low redshift (z ∼ 0.5) in Horizon-AGN, an adaptive-mesh-refinement hydrodynamical cosmological simulation box of 100 h −1 Mpc a side with AGN feedback implementation. We find that spheroidal galaxies in the simulation show a tendency to be aligned radially towards over-densities in the dark matter density field and other spheroidals. This trend is in agreement with observations, but the amplitude of the signal depends strongly on how shapes are measured and how galaxies are selected in the simulation. Disc galaxies show a tendency to be oriented tangentially around spheroidals in three-dimensions. While this signal seems suppressed in projection, this does not guarantee that disc alignments can be safely ignored in future weak lensing surveys. The shape alignments of luminous galaxies in Horizon-AGN are in agreement with observations and other simulation works, but we find less alignment for lower luminosity populations. We also characterize the systematics of galaxy shapes in the simulation and show that they can be safely neglected when measuring the correlation of the density field and galaxy ellipticities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.