Biomaterial characteristics such as surface topographies have been shown to modulate macrophage phenotypes. The standard methodologies to measure macrophage response to biomaterials are marker-based and invasive. Raman microspectroscopy (RM) is a marker-independent, noninvasive technology that allows the analysis of living cells without the need for staining or processing. In the present study, we analyzed human monocyte-derived macrophages (MDMs) using RM, revealing that macrophage activation by lipopolysaccharides (LPS), interferons (IFN), or cytokines can be identified by lipid composition, which significantly differs in M0 (resting), M1 (IFN-γ/LPS), M2a (IL-4/IL-13), and M2c (IL-10) MDMs. To identify the impact of a biomaterial on MDM phenotype and polarization, we cultured macrophages on titanium disks with varying surface topographies and analyzed the adherent MDMs with RM. We detected surface topography–induced changes in MDM biochemistry and lipid composition that were not shown by less sensitive standard methods such as cytokine expression or surface antigen analysis. Our data suggest that RM may enable a more precise classification of macrophage activation and biomaterial–macrophage interaction.
(1) The monocytic leukemia cell line THP-1 and primary monocyte-derived macrophages (MDMs) are popular in vitro model systems to study human innate immunity, wound healing, and tissue regeneration. However, both cell types differ significantly in their origin and response to activation stimuli. (2) Resting THP-1 and MDMs were stimulated with lipopolysaccharide (LPS) and interferon γ (IFNγ) and analyzed by Raman microspectroscopy (RM) before and 48 h after activation. Raman data were subsequently analyzed using principal component analysis. (3) We were able to resolve and analyze the spatial distribution and molecular composition of proteins, nucleic acids, and lipids in resting and activated THP-1 and MDMs. Our findings reveal that proinflammatory activation-induced significant spectral alterations at protein and phospholipid levels in THP-1. In MDMs, we identified that nucleic acid and non-membrane-associated intracellular lipid composition were also affected. (4) Our results show that it is crucial to carefully choose the right cell type for an in vitro model as the nature of the cells itself may impact immune cell polarization or activation results. Moreover, we demonstrated that RM is a sensitive tool for investigating cell-specific responses to activation stimuli and monitoring molecular changes in subcellular structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.