Potent neuroprotective effects of photobiomodulation with 670 nm red light (RL) have been demonstrated in several models of retinal disease. RL improves mitochondrial metabolism, reduces retinal inflammation and oxidative cell stress, showing its ability to enhance visual function. However, the current knowledge is limited to the main hypothesis that the respiratory chain complex IV, cytochrome c oxidase, serves as the primary target of RL. Here, we demonstrate a comprehensive cellular, molecular, and functional characterization of neuroprotective effects of 670 nm RL and 810 nm near-infrared light (NIRL) on blue light damaged murine primary photoreceptors. We show that respiratory chain complexes I and II are additional PBM targets, besides complex IV, leading to enhanced mitochondrial energy metabolism. Accordingly, our study identified mitochondria related RL- and NIRL-triggered defense mechanisms promoting photoreceptor neuroprotection. The observed improvement of mitochondrial and extramitochondrial respiration in both inner and outer segments is linked with reduced oxidative stress including its cellular consequences and reduced mitochondria-induced apoptosis. Analysis of regulatory mechanisms using gene expression analysis identified upregulation α-crystallins that indicate enhanced production of proteins with protective functions that point to the rescued mitochondrial function. The results support the hypothesis that energy metabolism is a major target for retinal light therapy.
Neural stem cells reside in a specialized neurogenic niche of the hippocampus termed the subgranular zone. Throughout life, they give rise to adult-born neurons in the dentate gyrus thereby contributing to learning and memory. Here, we report that neurons together with neural stem and precursor cells secrete the neurovascular protein epidermal growth factor-like protein 7 (EGFL7) to shape this niche. EGFL7 knock-out in vivo promoted adult neurogenesis generating neurons forming additional spines which permanently integrated into the neural circuit until old age. RNA-sequencing identified the cytokine VEGF-D as a major molecular driver of this process in vivo. In behavioral studies EGFL7 knock-out mice displayed stronger maintenance of memory suggesting longer-lasting spatial memory and improved memory consolidation in the hippocampus by modulation of pattern separation in young and aged mice. Taken together, EGFL7 is an upstream regulator of the VEGF-D in adult neurogenesis and a key regulator of learning and memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.