The international precision oncology program INFORM enrolls relapsed/refractory pediatric cancer patients for comprehensive molecular analysis. We report a two-year pilot study implementing ex vivo drug sensitivity profiling (DSP) using a library of 75–78 clinically relevant drugs. We included 132 viable tumor samples from 35 pediatric oncology centers in seven countries. DSP was conducted on multicellular fresh tumor tissue spheroid cultures in 384-well plates with an overall mean processing time of three weeks. In 89 cases (67%), sufficient viable tissue was received; 69 (78%) passed internal quality controls. The DSP results matched the identified molecular targets, including BRAF, ALK, MET, and TP53 status. Drug vulnerabilities were identified in 80% of cases lacking actionable (very) high-evidence molecular events, adding value to the molecular data. Striking parallels between clinical courses and the DSP results were observed in selected patients. Overall, DSP in clinical real-time is feasible in international multicenter precision oncology programs.
Novel drug treatments for pediatric patients with cancer are urgently needed. Success of drug development in pediatric oncology has been promising, but many drugs still fail in translation from preclinical to clinical phases. To increase the translational potential, several improvements have been implemented, including the use of clinically achievable concentrations in the drug testing phase. Although pharmacokinetic (PK) parameters of numerous investigated drugs are published, a comprehensive PK overview of the most common drugs in pediatric oncology could guide preclinical trial design and improve the translatability into clinical trials. A review of the literature was conducted for PK parameters of 74 anticancer drugs, from the drug sensitivity profiling library of the INdividualized Therapy FOr Relapsed Malignancies in Childhood (INFORM) registry. PK data in the pediatric population were reported and complemented by adult parameters when no pediatric data were available. In addition, blood–brain barrier (BBB)‐penetration assessment of drugs was provided by using the BBB score. Maximum plasma concentration was available for 73 (97%), area under the plasma concentration‐time curve for 69 (92%), plasma protein binding for 66 (88%), plasma half‐life for 57 (76%), time to maximum concentration for 54 (72%), clearance for 52 (69%), volume of distribution for 37 (49%), lowest plasma concentration reached by the drug before the next dose administration for 21 (28%), and steady‐state concentration for 4 (5%) of drugs. Pediatric PK data were available for 48 (65%) drugs. We provide a comprehensive review of PK data for 74 drugs studied in pediatric oncology. This data set can serve as a reference to design experiments more closely mimicking drug PK conditions in patients, and may thereby increase the probability of successful clinical translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.