The greatest threat to the protected Eurasian lynx (Lynx lynx) in Central Europe is human‐induced mortality. As the availability of lynx prey often peaks in human‐modified areas, lynx have to balance successful prey hunting with the risk of encounters with humans. We hypothesized that lynx minimize this risk by adjusting habitat choices to the phases of the day and over seasons. We predicted that (1) due to avoidance of human‐dominated areas during daytime, lynx range use is higher at nighttime, that (2) prey availability drives lynx habitat selection at night, whereas high cover, terrain inaccessibility, and distance to human infrastructure drive habitat selection during the day, and that (3) habitat selection also differs between seasons, with altitude being a dominant factor in winter. To test these hypotheses, we analyzed telemetry data (GPS, VHF) of 10 lynx in the Bohemian Forest Ecosystem (Germany, Czech Republic) between 2005 and 2013 using generalized additive mixed models and considering various predictor variables. Night ranges exceeded day ranges by more than 10%. At night, lynx selected open habitats, such as meadows, which are associated with high ungulate abundance. By contrast, during the day, lynx selected habitats offering dense understorey cover and rugged terrain away from human infrastructure. In summer, land‐cover type greatly shaped lynx habitats, whereas in winter, lynx selected lower altitudes. We concluded that open habitats need to be considered for more realistic habitat models and contribute to future management and conservation (habitat suitability, carrying capacity) of Eurasian lynx in Central Europe.
A population of Eurasian lynx Lynx lynx was established by reintroductions in the Bohemian Forest Ecosystem in the 1970s and 1980s. The most recent information on the population status indicates that the distribution has stagnated since the late 1990s, for unknown reasons. We assessed the availability of suitable habitat along the Austrian–German–Czech border, and hypothesized that the Bohemian–Bavarian lynx population is not in equilibrium with habitat suitability. Based on global positioning system data from 10 radio-collared lynx, we used a maximum entropy approach to model suitable habitat. Variables reflecting anthropogenic influence contributed most to the model and were negatively associated with the occurrence of lynx. We evaluated the model prediction using independent records of lynx from monitoring in Bavaria, Germany. Using our habitat approach we estimated the area of potential habitat, based on a mean annual home range of 445 km2 for males and 122 km2 for females. Our results indicated there were 12,415 km2 of suitable habitat, distributed among 13 patches, for a potential population of c. 142 (93–160) resident lynx. We assessed connectivity via least-cost paths and found that all suitable patches could be reached by the lynx. A comparison with the current distribution of lynx, however, confirms that a significant proportion of suitable habitat is not occupied, which indicates that the distribution is limited by factors other than habitat, with illegal killing being the most likely cause. Our study provides crucial information for the development of a conservation strategy and regional planning for the Bohemian–Bavarian lynx population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.