Tallgrass prairie is a disturbance‐dependent ecosystem that has suffered steep declines in the midwestern United States. The necessity of disturbance, typically fire or grazing, presents challenges to managers who must apply them on increasingly small and fragmented parcels. The goal of this study was to compare effects of management using cattle grazing or fire on vegetation and soil characteristics to aid managers in making decisions regarding the kind of disturbance to apply. We selected 73 sites, of which 27 were managed solely by cattle grazing and 46 solely by fire, for at least 11 yr leading up to the study. We stratified the sites by prairie type (dry, mesic, and wet) and sampled frequency of plant species on randomly placed transects, supplemented with botanist‐directed walks, and collected and composited five soil cores on a randomly selected transect within each prairie type at each site. We calculated rarefied richness and Shannon evenness from the transect data and mean coefficient of conservatism (CofC) from the total list of species. Soil samples were analyzed for texture, bulk density, total N and C, and potential net N nitrification and mineralization. A nonmetric multidimensional scaling analysis of the plant community data revealed differences in species associated with mesic and wet prairies, but no separation by management type. Similarly, none of the vegetation variables we calculated varied by management type, as determined by mixed‐effects models, but soil bulk density was 17.5% higher and total N was 22% higher on grazed sites than burned sites. Sites burned more recently had higher species richness and mean CofC, but fire was not associated with any soil variables. Sites grazed more recently had higher bulk density, total N and C, and faster N cycling rates. Overall, 28% of plant species were found exclusively in one management type or the other, but these species did not vary in mean CofC. We conclude that, at the levels of burning and grazing intensity we studied, both management approaches produce similar C storage and vegetation responses. To maintain maximum diversity across the landscape, however, both approaches are necessary.
Much of the remaining suitable habitat for monarchs (Danaus plexippus) in Minnesota is found in tallgrass prairies. We studied the association of adult monarch abundance with use of fire or grazing to manage prairies. Sites (n = 20) ranged in size from 1 to 145 hectares and included land owned and managed by the Minnesota DNR, U.S. Fish and Wildlife Service, The Nature Conservancy, and private landowners. We measured Asclepias spp. (milkweeds, monarch host plants) and forb frequency in 0.5 × 2-m plots located along randomly-placed transects that were stratified to sample wet, mesic, and dry prairie types at each site. Adult butterfly surveys took place three times at each site during the summers of 2016 and 2017, using a standardized Pollard Walk (400 m). Data were analyzed using mixed effects models. Monarchs were more abundant at sites managed with prescribed fire than with grazing. We found no difference in milkweed and forb frequency between burned and grazed prairies. There was no relationship between monarch abundance and the other predictor variables tested: milkweed frequency, site area, forb frequency, and percent prairie in a 1.5 km buffer area surrounding each site. Monarch abundance was lowest at grazed sites with high stocking rates. Our findings suggest that milkweed and forb frequency do not vary between burned and grazed sites, although we only considered land management practices for the 12 years before the study and the most recent burns occurred in 2014, 2 years prior to the start of our study. They also suggest that heavy grazing may have negative impacts on monarchs.
Butterflies and bees contribute significantly to grassland biodiversity and play important roles as pollinators and herbivores. Grassland conservation and management must be seen through the lens of insect conservation and management if these species are to thrive. In North America, grasslands are a product of climate and natural disturbances such as fire and grazing. These natural disturbances have changed considerably since European colonization and subsequent landscape fragmentation. The aim of this study was to better understand the impacts of fire and grazing management on butterfly and bee communities in tallgrass prairie, enabling land managers and conservationists to better protect and manage remnant prairie. We examined butterfly and bee abundance, species richness, and diversity in Minnesota tallgrass prairies managed by grazing or fire. In 2016 and 2017, we surveyed butterflies, bees, vegetation, and surrounding land use at 20 remnant prairies (10 burned and 10 grazed) with known management histories. Butterfly and bee abundance at our study sites were significantly negatively correlated. Butterfly abundance, but not species richness, was higher in burned than grazed prairies, and prairie‐associated grass‐feeding butterflies were more abundant at sites with higher plant species richness. Bee abundance was unrelated to management type but was higher at sites with sandier soils; bee species richness was positively associated with forb frequency. These findings highlight the challenges of designing management plans tailored to wide groups of pollinators and the potential pitfalls of using one group of pollinators as indicators for another. They also point to the importance of a mosaic of management practices across the prairie landscape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.