Characterizing the interactions that SARS-CoV-2 viral RNAs make with host cell proteins during infection can improve our understanding of viral RNA functions and the host innate immune response. Using RNA antisense purification and mass spectrometry, we identified up to 104 human proteins that directly and specifically bind to SARS-CoV-2 RNAs in infected human cells. We integrated the SARS-CoV-2 RNA interactome with changes in proteome abundance induced by viral infection and linked interactome proteins to cellular pathways relevant to SARS-CoV-2 infections. We demonstrated by genetic perturbation that cellular nucleic acid-binding protein (CNBP) and La-related protein 1 (LARP1), two of the most strongly enriched viral RNA binders, restrict SARS-CoV-2 replication in infected cells and provide a global map of their direct RNA contact sites. Pharmacological inhibition of three other RNA interactome members, PPIA, ATP1A1, and the ARP2/3 complex, reduced viral replication in two human cell lines. The identification of host dependency factors and defence strategies as presented in this work will improve the design of targeted therapeutics against SARS-CoV-2.
The size and shape of nanocarriers can affect their fate in vivo, but little is known about the effect of nanocarrier aspect ratio on biodistribution in the setting of cancer imaging and drug delivery. The production of nanoscale anisotropic materials is a technical challenge. A unique biotemplating approach based on of rod-shaped nucleoprotein nanoparticles with predetermined aspect ratios (AR 3.5, 7, and 16.5) is used. These rigid, soft-matter nanoassemblies are derived from tobacco mosaic virus (TMV) components. The role of nanoparticle aspect ratio is investigated, while keeping the surface chemistries constant, using either PEGylated stealth nanoparticles or receptor-targeted RGD-displaying formulations. Aspect ratio has a profound impact on the behavior of the nanoparticles in vivo and in vitro. PEGylated nanorods with the lowest aspect ratio (AR 3.5) achieve the most efficient passive tumorhoming behavior because they can diffuse most easily, whereas RGD-labeled particles with a medium aspect ratio (AR 7) are more efficient at tumor targeting because this requires a balance between infusibility and ligand–receptor interactions. The in vivo behavior of nanoparticles can therefore be tailored to control biodistribution, longevity, and tumor penetration by modulating a single parameter: the aspect ratio of the nanocarrier.
Dynamic small ubiquitin-like modifier (SUMO) linkages to diverse cellular protein groups are critical to orchestrate resolution of stresses such as genome damage, hypoxia, or proteotoxicity. Defense against pathogen insult (often reliant upon host recognition of “non-self” nucleic acids) is also modulated by SUMO, but the underlying mechanisms are incompletely understood. Here, we used quantitative SILAC-based proteomics to survey pan-viral host SUMOylation responses, creating a resource of almost 600 common and unique SUMO remodeling events that are mounted during influenza A and B virus infections, as well as during viral innate immune stimulation. Subsequent mechanistic profiling focused on a common infection-induced loss of the SUMO-modified form of TRIM28/KAP1, a host transcriptional repressor. By integrating knockout and reconstitution models with system-wide transcriptomics, we provide evidence that influenza virus-triggered loss of SUMO-modified TRIM28 leads to derepression of endogenous retroviral (ERV) elements, unmasking this cellular source of “self” double-stranded (ds)RNA. Consequently, loss of SUMO-modified TRIM28 potentiates canonical cytosolic dsRNA-activated IFN-mediated defenses that rely on RIG-I, MAVS, TBK1, and JAK1. Intriguingly, although wild-type influenza A virus robustly triggers this SUMO switch in TRIM28, the induction of IFN-stimulated genes is limited unless expression of the viral dsRNA-binding protein NS1 is abrogated. This may imply a viral strategy to antagonize such a host response by sequestration of induced immunostimulatory ERV dsRNAs. Overall, our data reveal that a key nuclear mechanism that normally prevents aberrant expression of ERV elements (ERVs) has been functionally co-opted via a stress-induced SUMO switch to augment antiviral immunity.
We investigated the spatiotemporal dynamics of HSV genome transport during the initiation of infection using viruses containing bioorthogonal traceable precursors incorporated into their genomes (HSVEdC). In vitro assays revealed a structural alteration in the capsid induced upon HSVEdC binding to solid supports that allowed coupling to external capture agents and demonstrated that the vast majority of individual virions contained bioorthogonally-tagged genomes. Using HSVEdC in vivo we reveal novel aspects of the kinetics, localisation, mechanistic entry requirements and morphological transitions of infecting genomes. Uncoating and nuclear import was observed within 30 min, with genomes in a defined compaction state (ca. 3-fold volume increase from capsids). Free cytosolic uncoated genomes were infrequent (7–10% of the total uncoated genomes), likely a consequence of subpopulations of cells receiving high particle numbers. Uncoated nuclear genomes underwent temporal transitions in condensation state and while ICP4 efficiently associated with condensed foci of initial infecting genomes, this relationship switched away from residual longer lived condensed foci to increasingly decondensed genomes as infection progressed. Inhibition of transcription had no effect on nuclear entry but in the absence of transcription, genomes persisted as tightly condensed foci. Ongoing transcription, in the absence of protein synthesis, revealed a distinct spatial clustering of genomes, which we have termed genome congregation, not seen with non-transcribing genomes. Genomes expanded to more decondensed forms in the absence of DNA replication indicating additional transitional steps. During full progression of infection, genomes decondensed further, with a diffuse low intensity signal dissipated within replication compartments, but frequently with tight foci remaining peripherally, representing unreplicated genomes or condensed parental strands of replicated DNA. Uncoating and nuclear entry was independent of proteasome function and resistant to inhibitors of nuclear export. Together with additional data our results reveal new insight into the spatiotemporal dynamics of HSV genome uncoating, transport and organisation.
SARS-CoV-2 infections pose a global threat to human health and an unprecedented research challenge. Among the most urgent tasks is obtaining a detailed understanding of the molecular interactions that facilitate viral replication or contribute to host defense mechanisms in infected cells. While SARS-CoV-2 co-opts cellular factors for viral translation and genome replication, a comprehensive map of the host cell proteome in direct contact with viral RNA has not been elucidated. Here, we use RNA antisense purification and mass spectrometry (RAP-MS) to obtain an unbiased and quantitative picture of the human proteome that directly binds the SARS-CoV-2 RNA in infected human cells. We discover known host factors required for coronavirus replication, regulators of RNA metabolism and host defense pathways, along with dozens of potential drug targets among direct SARS-CoV-2 binders. We further integrate the SARS-CoV-2 RNA interactome with proteome dynamics induced by viral infection, linking interactome proteins to the emerging biology of SARS-CoV-2 infections. Validating RAP-MS, we show that CNBP, a regulator of proinflammatory cytokines, directly engages the SARS-CoV-2 RNA. Supporting the functional relevance of identified interactors, we show that the interferon-induced protein RYDEN suppresses SARS-CoV-2 ribosomal frameshifting and demonstrate that inhibition of SARS-CoV-2-bound proteins is sufficient to manipulate viral replication. The SARS-CoV-2 RNA interactome provides an unprecedented molecular perspective on SARS-CoV-2 infections and enables the systematic dissection of host dependency factors and host defense strategies, a crucial prerequisite for designing novel therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.