Stereolithography is one of the most promising technologies for the production of tailored implants. Within this study, we show the results of a new resin formulation for three-dimensional printing which is also useful for subsequent surface functionalization. The class of materials is based on monomers containing either thiol or alkene groups. By irradiation of the monomers at a wavelength of 266 nm, we demonstrated an initiator-free stereolithographic process based on thiol-ene click chemistry. Specimens made from this material have successfully been tested for biocompatibility. Using Fourier-transform infrared spectrometry and fluorescent staining, we are able to show that off-stoichiometric amounts of functional groups in the monomers allow us to produce scaffolds with functional surfaces. We established a new protocol to demonstrate the opportunity to functionalize the surface by copper-catalyzed azide-alkyne cycloaddition chemistry. Finally, we demonstrate a three-dimensional bioprinting concept for the production of potentially biocompatible polymers with thiol-functionalized surfaces usable for subsequent functionalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.