Defined, quartz-diluted mixtures of sulfur (S) compounds with different oxidation state (OS) were analyzed by K-edge XANES spectroscopy using linear combination fitting (LCF) and spectrum deconvolution by fitting several Gaussian and arctangent functions (GCF). Additionally, for different soils the S speciation as calculated by both methods was compared with results of a wet-chemical S speciation. For mixtures of FeS, L-cysteine, and Na2SO4, the S speciation was recovered with satisfactory accuracy and precision by both methods at the 2 and 0.2 mg S g(-1) level. For GCF, white-line peaks must be normalized with respect to their OS-specific absorption cross-section. LCF must be conducted with dilute reference compounds to avoid self-absorption effects. For mixtures of FeS, FeS2, S°, and L-cysteine, both procedures showed poor accuracy. For the soils, similar percentages of reduced inorganic S, organic S, and sulfate were calculated by LCF, GCF, and wet chemical S speciation. GCF allows a fair estimation of S species groups with different OS (inorganic reduced S, organic reduced S, organic intermediate S, oxidized S) in soils without standards. If dilute standards of all S compounds assumed to be present in a sample are available, LCF is more objective and allows a more detailed S speciation.
In forested catchments, retention and remobilization of S in soils and wetlands regulate soil and water acidification. The prediction of long‐term S budgets of forest ecosystems under changing environmental conditions requires a precise quantification of all relevant soil S pools, comprising S species with different remobilization potential. In this study, the S speciation in topsoil horizons of a soil toposequence with different groundwater influence and oxygen availability was assessed by synchrotron‐based X‐ray absorption near‐edge spectroscopy (XANES). Our investigation was conducted on organic (O, H) and mineral topsoil (A, AE) horizons of a Cambisol–Stagnosol–Histosol catena. We studied the influence of topography (i.e., degree of groundwater influence) and oxygen availability on the S speciation. Soil sampling and pretreatment were conducted under anoxic conditions. With increasing groundwater influence and decreasing oxygen availability in the sequence Cambisol–Stagnosol–Histosol, the C : S ratio in the humic topsoil decreased, indicating an enrichment of soil organic matter in S. Moreover, the contribution of reduced S species (inorganic and organic sulfides, thiols) increased systematically at the expense of intermediate S species (sulfoxide, sulfite, sulfone, sulfonate) and oxidized S species (ester sulfate, SO$ _4^{2-} $). These results support the concept of different S‐retention processes for soils with different oxygen availability. Sulfur contents and speciation in two water‐logged Histosols subject to permanently anoxic and temporarily oxic conditions, respectively, were very different. In the anoxic Histosol, reduced S accounted for 57% to 67% of total S; in the temporarily oxic Histosol, reduced S was only 43% to 54% of total S. Again, the extent of S accumulation and the contribution of reduced S forms to total S closely reflected the degree of O2 availability. Our study shows that XANES is a powerful tool to elucidate key patterns of the biogeochemical S cycling in oxic and anoxic soil environments. In contrast to traditional wet‐chemical methods, it particularly allows to distinguish organic S compounds in much more detail. It can be used to elucidate microbial S‐metabolism pathways in soils with different oxygen availability by combining soil inventories and repeated analyses of a sample in different stages of field or laboratory incubation experiments under controlled boundary conditions and also to study (sub)microspatial patterns of S speciation in aggregated soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.