Spontaneous succession is increasingly involved in grassland restoration, because it offers a cost‐effective solution compared to technical reclamation methods. This topic is especially important nowadays, as large areas of marginal croplands are being abandoned on poor soils of Central and Eastern Europe, which offers a possibility for the spontaneous recovery of typical target grasslands. Studying the vegetation composition, aboveground biomass, and seed bank in old fields of different age and target calcareous sand grasslands using the chronosequence method, we aimed to answer the following questions: (1) Which species contribute to the seed banks of old fields and reference grasslands? (2) Does the direction of vegetation and seed bank succession trend toward the reference grasslands? (3) How are the vegetation changes in spontaneous succession reflected by the soil seed banks of old fields? In reference grasslands on the dune tops only sporadic seed banks were detected, while several hygrophytes had dense seed banks in reference grasslands in dune slacks. Similarity between the species composition of vegetation and seed banks was low. The development of vegetation and seed banks in old fields progressed toward that of target grasslands and the proportion of weedy species (e.g. indigenous weeds and invasive species) also decreased with time. The cryptogam biomass correlated significantly negatively, while the soil phosphorus significantly positively with the weedy species seed bank density. Our results indicated that the role of persistent seed banks in the regeneration of calcareous sand grasslands from old fields is rather limited and promising vegetation changes are mostly driven by spatial dispersal.
Knowledge of lichenicolous fungi is limited at a worldwide level and needs further basic information, as in the case of Central and Southern Europe. The literature sources for “Revised checklist of the Hungarian lichen-forming and lichenicolous fungi” by Lőkös and Farkas in 2009 contained 54 lichenicolous and other microfungi species of 38 genera. Due to recent field studies and microscopic work, the number of known species has increased to 104 lichenicolous species in 64 genera during the last decade, including 53 new species for the country. Old records of five species were confirmed by new collections. Key characteristics of some of the most interesting species are illustrated by microscopic views and two distribution maps are provided. Recent biodiversity estimates suggest that the number of currently known species could be 1.5 (–2) times higher with more detailed work on field collections. Although lichenicolous fungi have been less well studied in Hungary in the past, the relative diversity of lichenicolous fungi there, as indicated by Zhurbenko’s lichenicolous index, was found to be slightly higher than the mean value calculated for the world.
Terricolous lichens are abundant in semi-arid areas, where they are exposed to high irradiation. Photoprotection is essential for the algae as the photobiont provides the primer carbon source for both symbionts. The UV-protectant lichen metabolites and different quenching procedures of the alga ensure adequate photoprotection. Since the long-term effect of diminishing UV-protectant lichen metabolites is unknown, a major part of lichen secondary metabolites was removed from Cladonia foliacea thalli by acetone rinsing, and the lichens were then maintained under field conditions to investigate the effect on both symbionts for 3 years. Our aim was to determine if the decreased level of UV-protectant metabolites caused an elevated photoprotection in the algae and to reveal the dynamics of production of the metabolites. Photosynthetic activity and light protection were checked by chlorophyll a fluorescence kinetics measurements every 6 months. The concentrations of fumarprotocetraric and usnic acids were monitored by chromatographic methods. Our results proved that seasonality had a more pronounced effect than that of acetone treatment on the function of lichens over a long-term scale. Even after 3 years, the acetone-treated thalli contained half as much usnic acid as the control thalli, and the level of photoprotection remained unchanged in the algae. However, the amount of available humidity was a more critical limiting environmental factor than the amount of incoming irradiation affecting usnic acid production. The lichenicolous fungus Didymocyrtis cladoniicola became relatively more abundant in the acetone-treated samples than in the control samples, indicating a slight change caused by the treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.