The rhodolith-forming coralline red algal species Lithothamnion glaciale is the key ecosystem engineer of rhodolith beds on the coast of Svalbard. Because it significantly increases local biodiversity in this high-Arctic environment, we investigate the potential impact of changing environmental parameters on its calcite skeleton. Using energy-dispersive X-ray spectroscopy and environmental data from the Norwegian government’s environmental monitoring, we show that the magnesium concentration within an analysed algal calcite skeleton decreases linearly and significantly over a 40-year time span (R2 = 0.267, pperm < 0.001). Mg/Ca ratios show the most significant correlation with atmospheric CO2 concentrations (R2 = 0.614, p < 0.001), and lower correlations to sea ice cover and seawater temperature. This raises the question of whether the Mg/Ca in the rhodolith skeleton is reflecting an increase in aqueous pCO2 that drives ongoing ocean acidification. Since such a change in geochemistry may alter the stability of the calcite skeleton, our results could imply an impact on the future role of the rhodoliths as ecosystem engineers and consequently on Arctic biodiversity.
Biodiversity follows distinct and observable patterns. Where two systems meet, biodiversity is often increased, due to overlapping occurrence ranges and the presence of specialized species that can tolerate the dynamic conditions of the transition zone. One of the most pronounced transition zones occurs at shores, where oceans and terrestrial habitat collide, forming the shore–inland transition zone. The relevance of this transition zone in shaping a system’s community structure is particularly pronounced on small islands due to their high shore-to-inland-area ratio. However, the community structure of insular faunas along this transition zone is unknown. Here, we investigated the diversity patterns along the beach–inland transition zone of small islands and tested the hypothesis that species diversity increases toward the transition zone where beach and interior habitat meet. By measuring environmental parameters, resource availability, and ground-associated macrofauna diversity along transects running across the beach–inland transition zone, we show that a gradual change in species composition from beach to the inland exists, but neither taxa richness, diversity, nor overall abundance changed significantly. These findings offer important insights into insular community structure at the transition zone from sea to land that are relevant to better understand the dynamic and unique characteristics of insular ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.