The hydration of all trivalent lanthanoid (Ln) ions is studied theoretically from two aspects: energy and wave function. With the help of the incremental scheme, for the first time the lanthanoid(III) aqua complexes are computed at the CCSD(T) level using large basis sets. These computations prove that SCS-MP2 is nearly as accurate as CCSD, thus enabling us to give the most accurate first principle hydration Gibbs free energies and reliable preferred coordination numbers (CNs) of lanthanoid(III) aqua complexes: 9, 8, and both, for light, heavy, and intermediate lanthanoids, respectively. Then a series of wave function analyses were performed to explore the deeper reasons for the preference of specific CNs. An unexpected observation is that as Ln goes from samarium to lutetium, the capping Ln-O bonds in nona-aqua lanthanoid complexes become weaker while they get shorter. Therefore, as the capping Ln-O bonds are getting easier to disrupt, heavier lanthanoids will prefer a low CN, i.e., 8. On the basis of this and previous work of other groups, a model for the water exchange kinetics of lanthanoid(III) ions is proposed. This model suggests that the capping Ln-O bonds of moderate strength, which occur for intermediate lanthanoids, are advantageous for the formation of a bicapped trigonal prism intermediate during water exchange. This explains some NMR experiments and, more importantly, an observation which puzzled investigators for a long time, i.e., that the exchange rate reaches a maximum for the middle region but is low at the beginning and end of the lanthanoid series. This nontrivial behavior of capping Ln-O bonds is interpreted and is believed to determine the hydration behavior of lanthanoid(III) ions.
The Gibbs energies of hydration of actinoid(III) ions are evaluated for density functional optimized geometries of [An(H2O)h](3+) complexes (h = 8, 9) at the coupled cluster singles, doubles, and perturbative triples level by means of the incremental scheme. Scalar-relativistic 5f-in-core pseudopotentials for actinoids and basis sets of polarized triple-ζ quality were applied. The calculated Gibbs energies for the octa- and nona-aquo complexes agree within 1% with the experimental values which are available only for uranium and plutonium. Compared to the hydrate complexes of the lanthanoid(III) ions those of the actinoid(III) series are slightly less stable.
Density functional calculations have been performed to study selected hydrated lanthanide(iii) motexafins (Ln-Motex, Ln = La, Gd, Lu) by using energy-consistent 4f-in-core lanthanide pseudopotentials to include the major relativistic effects due to the heavy metals. The maximum number (n) of water molecules bound strongly to [Ln-Motex] (Ln = La, Gd, Lu) was determined to be 6 by calculating the change of the Gibbs energies for the reactions [Ln-Motex(HO)] + HO → [Ln-Motex(HO)]. The number of water molecules coordinated directly to Ln was found to be 3 for La, and 2 for Gd and Lu. The explicit treatment of the tightly bound water molecules in [Ln-Motex(HO)] in combination with the COSMO solvation model yielded calculated reduction potentials and UV-vis absorption spectra in good agreement with available experimental data.
A detailed theoretical study of the mechanism and energetics of an organocatalysis based on C=N activation by halogen-bonding is presented for the hydrocyanation of N-benzylidenemethylamine. The calculations at the level of scalar-relativistic gradient-corrected density functional theory give an insight in this catalytic concept and provide information on the characteristics of four different monodentate catalyst candidates acting as halogen-bond donors during the reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.