The discharge of toxic heavy metals including zinc (Zn), nickel (Ni), lead (Pb), copper (Cu), chromium (Cr), and cadmium (Cd) in water above the permissible limits causes high threat to the surrounding environment. Because of their toxicity, heavy metals greatly affect the human health and the environment. Recently, better remediation techniques were offered using the nanotechnology and nanomaterials. The attentions were directed toward cost-effective and new fabricated nanomaterials for the application in water/wastewater remediation, such as zeolite, carbonaceous, polymer based, chitosan, ferrite, magnetic, metal oxide, bimetallic, metallic, etc. This review focused on the synthesis and capacity of various nanoadsorbent materials for the elimination of different toxic ions, with discussion of the effect of their functionalization on the adsorption capacity and separation process. Additionally, the effect of various experimental physicochemical factors on heavy metals adsorption, such as ionic strength, initial ion concentration, temperature, contact time, adsorbent dose, and pH was discussed.
Nowadays, people over the world face severe water scarcity despite the presence of several water sources. Adsorption is considered as the most efficient technique for the treatment of water containing biological, organic, and inorganic contaminants. For this purpose, materials from various origins (clay minerals, modified clays, zeolites, activated carbon, polymeric resins, etc.,) have been considered as adsorbent for contaminants. Despite their cheapness and valuable properties, the use of clay minerals as adsorbent for wastewater treatment is limited due to many factors (low surface area, regeneration, and recovery limit, etc.). However, clay mineral can be used to enhance the performance of polymeric materials. The combination of clay minerals and polymers produces clay-polymers nanocomposites (CPNs) with advanced properties useful for pollutants removal. CPNs received a lot of attention for their efficient removal rate of various organic and inorganic contaminants via flocculation and adsorption ability. Three main classes of CPNs were developed (exfoliated nanocomposites (NCs), intercalated nanocomposites, and phase-separated microcomposites). The improved materials can be explored as novel and cost-effective adsorbents for the removal of organic and inorganic pollutants from water/wastewater. The literature reported the ability of CPNs to remove various pollutants such as bacteria, metals, phenol, tannic acid, pesticides, dyes, etc. CPNs showed higher adsorption capacity and efficient water treatment compared to the individual components. Moreover, CPNs offered better regeneration than clay materials. The present paper summarizes the different types of clay-polymers nanocomposites and their effective removal of different contaminants from water. Based on various criteria, CPNs future as promising adsorbent for water treatment is discussed.
Antibiotics can accumulate through food metabolism in the human body which may have a significant effect on human safety and health. It is therefore highly beneficial to establish easy and sensitive approaches for rapid assessment of antibiotic amounts. In the development of next-generation biosensors, nanomaterials (NMs) with outstanding thermal, mechanical, optical, and electrical properties have been identified as one of the most hopeful materials for opening new gates. This study discusses the latest developments in the identification of antibiotics by nanomaterial-constructed biosensors. The construction of biosensors for electrochemical signal-transducing mechanisms has been utilized in various types of nanomaterials, including quantum dots (QDs), metal-organic frameworks (MOFs), magnetic nanoparticles (NPs), metal nanomaterials, and carbon nanomaterials. To provide an outline for future study directions, the existing problems and future opportunities in this area are also included. The current review, therefore, summarizes an in-depth assessment of the nanostructured electrochemical sensing method for residues of antibiotics in different systems.
The unique biological and physicochemical characteristics of biogenic (green-synthesized) nanomaterials (NMs) have attracted significant interest in different fields, with applications in the agrochemical, food, medication delivery, cosmetics, cellular imaging, and biomedical industries. To synthesize biogenic nanomaterials, green synthesis techniques use microorganisms, plant extracts, or proteins as bio-capping and bio-reducing agents and their role as bio-nanofactories for material synthesis at the nanoscale size. Green chemistry is environmentally benign, biocompatible, nontoxic, and economically effective. By taking into account the findings from recent investigations, we shed light on the most recent developments in the green synthesis of nanomaterials using different types of microbes and plants. Additionally, we cover different applications of green-synthesized nanomaterials in the food and textile industries, water treatment, and biomedical applications. Furthermore, we discuss the future perspectives of the green synthesis of nanomaterials to advance their production and applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.