BackgroundEffective management of patients with diabetic foot infection is a crucial concern. A delay in prescribing appropriate antimicrobial agent can lead to amputation or life threatening complications. Thus, this electronic nose (e-nose) technique will provide a diagnostic tool that will allow for rapid and accurate identification of a pathogen.ResultsThis study investigates the performance of e-nose technique performing direct measurement of static headspace with algorithm and data interpretations which was validated by Headspace SPME-GC-MS, to determine the causative bacteria responsible for diabetic foot infection. The study was proposed to complement the wound swabbing method for bacterial culture and to serve as a rapid screening tool for bacteria species identification. The investigation focused on both single and poly microbial subjected to different agar media cultures. A multi-class technique was applied including statistical approaches such as Support Vector Machine (SVM), K Nearest Neighbor (KNN), Linear Discriminant Analysis (LDA) as well as neural networks called Probability Neural Network (PNN). Most of classifiers successfully identified poly and single microbial species with up to 90% accuracy.ConclusionsThe results obtained from this study showed that the e-nose was able to identify and differentiate between poly and single microbial species comparable to the conventional clinical technique. It also indicates that even though poly and single bacterial species in different agar solution emit different headspace volatiles, they can still be discriminated and identified using multivariate techniques.
Muscle fatigue is described by the decline in muscle maximum force during contraction. The fatigue occurs in the nervous or muscle fibre cells. The nerves produce a high-frequency signal to gain the maximum contraction, but it cannot sustain the high frequency signal for a long time, and that leads to a decline in muscle force. The surface Electromyography (EMG) is the dominant method to detect muscle fatigue because the EMG signals give more information about the muscle’s activities. This review discussed the EMG signal processing and the methods of detection muscles fatigue with three domains (time domain, frequency domain, and time-frequency domain) based on EMG signals that are collected from the muscles during dynamic and static movements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.