In this paper, a new operational matrix of integration is derived using Genocchi polynomials, which is one of the Appell polynomials. By using the matrix, we develop an efficient, direct and new numerical method for solving a class of fractional optimal control problems. The fractional derivative in the dynamic constraints was replaced with the Genocchi polynomials with unknown coefficients and a Genocchi operational matrix of fractional integration. Then, the equation derived from the dynamic constraints was put into the performance index. Hence, the fractional optimal control problems will be reduced to fractional variational problems. By finding a necessary condition for the optimality for the performance index, we will obtain a system of algebraic equations that can be easily solved by using any numerical method. Hence, we obtain the value of unknown coefficients of Genocchi polynomials. Lastly, the solution of the fractional optimal control problems will be obtained. In short, the properties of Genocchi polynomials are utilized to reduce the given problems to a system of algebraic equations. The approximation approach is simple to use and computer oriented. Illustrative examples are given to show the simplicity, accuracy and applicability of the method.
In this paper, we solve a class of fractional variational problems (FVPs) by using operational matrix of fractional integration which derived from second order spline (B-spline) basis function. The fractional derivative is defined in the Caputo and Riemann-Liouville fractional integral operator. The B-spline function with unknown coefficients and B-spline operational matrix of integration are used to replace the fractional derivative which is in the performance index. Next, we applied the method of constrained extremum which involved a set of Lagrange multipliers. As a result, we get a system of algebraic equations which can be solve easily. Hence, the value for unknown coefficients of B-spline function is obtained as well as the solution for the FVPs. Finally, the illustrative examples shown the validity and applicability of this method to solve FVPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.