Stylometry is a statistical technique used to analyze the variations in the author's writing styles and is typically applied to authorship attribution problems. In this investigation, we apply stylometry to authorship identification of multi-author documents (AIMD) task. We propose an AIMD technique called Co-Authorship Graph (CAG) which can be used to collaboratively attribute different portions of documents to different authors belonging to the same community. Based on CAG, we propose a novel AIMD solution which (i) significantly outperforms the existing state-of-the-art solution; (ii) can effectively handle a larger number of co-authors; and (iii) is capable of handling the case when some of the listed co-authors have not contributed to the document as a writer. We conducted an extensive experimental study to compare the proposed solution and the best existing AIMD method using real and synthetic datasets. We show that the proposed solution significantly outperforms existing state-of-the-art method.
Stylometry has been successfully applied to perform authorship identification of single-author documents (AISD). The AISD task is concerned with identifying the original author of an anonymous document from a group of candidate authors. However, AISD techniques are not applicable to the authorship identification of multi-author documents (AIMD). Unlike AISD, where each document is written by one single author, AIMD focuses on handling multi-author documents. Due to the combinatoric nature of documents, AIMD lacks the ground truth information-that is, information on writing and non-writing authors in a multi-author document-which makes this problem more challenging to solve. Previous AIMD solutions have a number of limitations: (i) the best stylometry-based AIMD solution has a low accuracy, less than 30%; (ii) increasing the number of co-authors of papers adversely affects the performance of AIMD solutions; and (iii) AIMD solutions were not designed to handle the non-writing authors (NWAs). However, NWAs exist in real-world cases-that is, there are papers for which not every co-author listed has contributed as a writer. This paper proposes an AIMD framework called the Co-Authorship Graph that can be used to (i) capture the stylistic information of each author in a corpus of multi-author documents and (ii) make a multi-label prediction for a multi-author query document. We conducted extensive experimental studies on one synthetic and three real-world corpora. Experimental results show that our proposed framework (i) significantly outperformed competitive techniques; (ii) can effectively handle a larger number of co-authors in comparison with competitive techniques; and (iii) can effectively handle NWAs in multi-author documents.
Automatic vehicle damage detection platform can increase the market value of car insurance. The es- timation process is usually manual and requires hu- man experts and their time to evaluate the damage cost. Intelligent Vehicle Accident Analysis (IVAA) system provides an artificial intelligence as a service (AIaaS) for building a system that can automatically assess vehicle parts’ damage and severity level. The insurance company can adopt our service to build the application to speedup the claiming process. There are four main elements in the service system which support four stakeholders in an insurance company: insurance experts, data scientists, operators and field employees. Insurance experts utilize the data label- ing tool to label damaged parts of a vehicle in a given image as a training data building process. Data scientists iterate to the deep learning model build- ing process for continuous model updates. Opera- tors monitor the visualization system for daily statis- tics related to the number of accidents based on lo- cations. Field employees use LINE Official integra- tion to take a photo of damaged vehicle at the acci- dent site and retrieve the repair estimation. IVAA is built on the docker image which can scale-in or scale- out the system depend on utilization efficiently. We deploy the Faster Region-based convolutional neural network, along with residual Inception network to lo- calize the damage region and classify into 5 damage levels for a vehicle part. The accuracy of the localiza- tion is 93.28 % and the accuracy of the classification is 98.47%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.