Mutations in the parkin gene, which encodes a ubiquitin ligase, are currently recognized as the main contributor to familial forms of Parkinson's disease (PD). A simple assumption about the effects of PD-linked mutations in parkin is that they impair or ablate the enzyme activity. However, a number of recent studies, including ours, have indicated that many disease-linked point mutants of parkin retain substantial catalytic activity. To understand how the plethora of mutations on parkin contribute to its dysfunction, we have conducted a systematic analysis of a significant number of parkin point mutants (22 in total), which represent the majority of parkin missense/nonsense mutations reported to date. We found that more than half of these mutations, including many located outside of the parkin RING fingers, produce alteration in the solubility of parkin which influences its detergent extraction property. This mutation-mediated alteration in parkin solubility is also associated with its propensity to form intracellular, aggresome-like, protein aggregates. However, they do not represent sites where parkin substrates become sequestered. As protein aggregation sequesters the functional forms away from their normal sites of action, our results suggest that alterations in parkin solubility and intracellular localization may underlie the molecular basis of the loss of function caused by several of its mutations.
Cancer stem cells have been shown to initiate and sustain tumor growth. In many instances, clinical material is limited, compounded by a lack of methods to preserve such cells at convenient time points. Although brain tumor-initiating cells grown in a spheroid manner have been shown to maintain their integrity through serial transplantation in immune-compromised animals, practically, it is not always possible to have access to animals of suitable ages to continuously maintain these cells. We therefore explored vitrification as a cryopreservation technique for brain tumor-initiating cells. Tumor neurospheres were derived from five patients with glioblastoma multiforme (GBM). Cryopreservation in 90% serum and 10% dimethyl sulfoxide yielded greatest viability and could be explored in future studies. Vitrification yielded cells that maintained self-renewal and multipotentiality properties. Karyotypic analyses confirmed the presence of GBM hallmarks. Upon implantation into NOD/SCID mice, our vitrified cells reformed glioma masses that could be serially transplanted. Transcriptome analysis showed that the vitrified and nonvitrified samples in either the stem-like or differentiated states clustered together, providing evidence that vitrification does not change the genotype of frozen cells. Upon induction of differentiation, the transcriptomes of vitrified cells associated with the original primary tumors, indicating that tumor stem-like cells are a genetically distinct population from the differentiated mass, underscoring the importance of working with the relevant tumor-initiating population. Our results demonstrate that vitrification of brain tumor-initiating cells preserves the biological phenotype and genetic profiles of the cells. This should facilitate the establishment of a repository of tumor-initiating cells for subsequent experimental designs.
Loss of parkin function is a predominant cause of familial Parkinsonism. Emerging evidence also suggests that parkin expression variability may confer a risk for sporadic Parkinson disease. We have recently demonstrated that a wide variety of Parkinson disease-linked stressors, including dopamine (DA), induce parkin solubility alterations and promote its aggregation within the cell, a phenomenon that may underlie the progressive susceptibility of the brain to degeneration. The vulnerability of parkin to stress-induced modification is likely due to its abundance of cysteine residues. Here, we performed a comprehensive mutational analysis and demonstrate that Cys residues residing both within and outside of the RING-IBR (in between RING fingers)-RING domain of parkin are important in maintaining its solubility. The majority of these Cys residues are highly conserved in parkin across different species and potentially fulfil important structural roles. Further, we found that both parkin and HHARI (human homologue of Drosophila ariadne), another RING-IBR-RING-type ubiquitin ligase, are comparably more susceptible to solubility alterations induced by oxidative and nitrosative stress when compared with other non-RING-IBR-RING Cys-containing enzymes. However, parkin appears to be uniquely sensitive to DA-mediated stress, the specificity of which is likely due to DA modification of 2 Cys residues on parkin (Cys-268 and Cys-323) that are distinct from other RING-IBR-RING members. Parkinson disease (PD)4 is the most common neurodegenerative movement disorder characterized pathologically by the rather selective loss of midbrain dopaminergic neurons in the substantia nigra pars compacta and the presence of intraneuronal protein inclusions known as Lewy bodies. Although most cases of PD occur in a sporadic manner, a subset of PD cases is inheritable and attributable to mutations in specific genes. These familial PD-linked genes include ␣-synuclein, parkin, DJ-1, PINK1, and LRRK2 (1, 2). Of these, mutations in the parkin gene are currently recognized to be a predominant cause of familial, early onset PD (3-5). Further, emerging evidence also suggests that parkin expression variability may confer a risk for the development of the more common, sporadic form of PD (6, 7).The importance of functional parkin to dopaminergic neuronal survival is probably related to the multitude of neuroprotective roles it serves (8, 9). Parkin functions as a ubiquitin ligase associated with protein homeostasis and apparently confers protection to neurons against a diverse range of cellular insults (8,9). Recently, we have demonstrated that a wide variety of PD-linked stressors, including dopamine (DA), induce parkin solubility alterations and promote its aggregation within the cell (10). Our observations corroborated with a similar study conducted by LaVoie et al. (11), who further showed that DA covalently modifies parkin via its Cys residues, although the number and location of the Cys targeted by DA remain unknown. Since parkin functions as a br...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.