Optimal Network Reconfiguration (NR) is a well-accepted approach to minimize power loss and enhance voltage profile in the Electrical Distribution Networks (EDN). Since the NR problem contains huge combinational search space, most researchers consider the meta-heuristic techniques to attain NR solution. However, these meta-heuristic techniques do not guarantee to obtain the optimal solution besides they require large processing time to converge. This is mainly due to (1) random initialization and updating of population and (2) the continuous verification of population during the search process. With the aim of reducing the computational time and improving the consistency in obtaining the optimal solution as well as minimizing power loss and enhancing the voltage profile of the EDN, this work proposes a new method based on two-stage optimizations. The proposed method introduces an approach to simplify the network into simplified network graph. Then, this approach is utilized for guided initializations and generations of the population and for the proper population's codification. The proposed method is implemented using the firefly algorithm and verified on 33-bus and 118-bus test systems. The results show the ability of the proposed method to obtain the optimal solution within fast computational time and with superior consistency compared to the conventional methods.
This paper presents a load shedding scheme for a distribution network connected to mini hydro generations. The proposed scheme uses the rate of change of frequency (ROCOF) to estimate the power imbalance and voltage stability (VS) to prioritize the load that is to be shed. The load with the most critical voltage stability (which is based on a special index) is given the first priority to be disconnected from the network in order to avoid voltage collapse. By performing load shedding based on the combination of the ROCOF and VS techniques, a better system frequency and enhanced voltage magnitudes can be achieved. The performance of the proposed scheme is validated on existing Malaysian network interconnected with a mini hydro generator. Simulation results show that the proposed scheme not only successfully stabilizes system frequency, but also simultaneously stabilizes the voltage magnitude of the buses within an acceptable limit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.