The reduction of world oil reserves fossil fuels and increasing environmental concerns significantly influences the popularity of biodiesel as an alternative diesel. This research investigates the effects of storage duration of variant blending waste cooking oil ratio under different storage temperature on fuel properties. The biodiesel samples were stored at different temperatures and were monitored at regular interval over a period of 70 days. Blending of biodiesel was varied from 5vol % (WCO5) ~15vol% (WCO15) and storage temperature from 24°C~35°C. These samples were monitored on a weekly and the effects of storage conditions on properties of biodiesel such as density, kinematics viscosity, acid value, water content and flash point of biodiesel were discussed in detail. The observation of biodiesel shows that the increasing of storage duration of biodiesel derived from waste cocking oil influences to the increasing of density, kinematics viscosity, acid value and water content.
The energy is the most of the human existence. Consumption fossil fuels has grown substantially and consumption the energy sources that is seen as having a major environmental impacts. Diminution world oil reserves and increasing environmental concern have induced found alternative and renewable energy resources called biodiesel. Biodiesel fuel from the vegetable oil, regarded as of the best candidate for the substitute diesel fuel in diesel engines because of the characteristics closer. The application of biodiesel has shown a positive impact in resolving these issues. This paper introduces some type of alternative fuel whose oils are potential sources of biodiesel. These types are crude palm oil (CPO), straight vegetable oil (SVO), waste cooking oil (WCO) and Jatrophacurcas (JPO). From the review, fuel properties are found to considerably different on density, viscosity, acid value, water content and flash point as compared with standard diesel. In conclusion, a long period of storage will reduce the quality of biodiesel does not matter what kind of conditions and environments that are exposed to. However, the rate of degradation of biodiesel can be slow if the right circumstances and environment provided. IntroductionIn late years, alternative fuels, energy efficiency, environmental security, energy conservation and management have become significant due to depletion of fossil fuel and environmental degradation. The alternative fuels or so called biodiesel can be better tried for diesel engine as compared to gas engines because of the construction of the diesel engine is very full-bodied and can operate under high compression ratio along with a substantial quantity of extra air. Biodiesel fuel will mix with soft wind in the combustion chamber to go through compression ignition. After the ignition process, performance and emission are produced. In this study, the focus would be on Storage and handling of biodiesel fuels whereby storage and handling are significant factors which can influence the quality of biodiesel as it is prone towards degradation as compared to fossil fuel. Normally, fuel is stored in a large vessel or tank at outdoor spaces so it is exposed to natural environmental condition where the properties would vary according to the conditions. The constituents which could speed the degradation of biodiesel include air (oxygen), light (UV), elevated temperatures, trace of metal, peroxide and the surface area between biodiesel and air. Biodiesel fuel is more hygroscopic compared to diesel fuel. It bears a natural inclination to absorb wet and water which tend to concentrate on the metal surface, favoring the corrosion [1].Even though the exposure of biodiesel towards light and air are cut back to the minimum level, but after some time, traces of air and light will still slide through and come in touch with the biodiesel inside. To make matter worse, heat from surrounding, presence of metals and water in the fuel may still rush up the oxidation procedure. Also, contamination by bacteria or fu...
Abstract. The effects of different laminated hybrid composites stacking configuration subjected to ballistic impact were investigated. The hybrid composites consist of woven coir (C) and woven Kevlar (K) layers laminated together. The samples of woven coir were prepared using handloom device. The composites were produced by stacking the laminated woven coir and Kevlar alternately with the presence of the binder. The samples were tested under ballistic impact with different stacking configuration. The results obtained had successfully achieved the National Institute of Justice (NIJ) standard level IIA with energy absorption of 435.6 kJ and 412.2 kJ under the projectile speed of between 330 m/s and 321 m/s respectively. Samples that having Kevlar layer at the front face and woven coir layer as back face achieved partial penetration during projectile impact. This orientation is proven to have good impact energy absorption and able to stop projectile at the second panel of the composites.
The prospects of fossil oil resources and strengthen of future emission regulation have raised keen attention together with the issue of renewable alternative fuel. As one of the different solutions to these problems, emulsion fuel technology in biodiesel has received close attention because it may provide better combustion efficiency and would contribute to a reduction in emissions, such as nitrogen oxides (NO x ) or particulate matter (PM).The solution of this issue is by using Biodiesel fuel as an alternative fuel from waste cooking oil (WCO), crude palm oil (CPO) and Jatropha Oil (JPO). In addition, Waste cooking oil is one of the most economical options for producing biodiesel due to the biodegradable properties and preserves energy. This study focuses on the observation of ignition and combustion characteristics of biodiesel-water-air rapid mixing of biodegradable fuel using internally rapid mixing injector in burner combustion. In this research, the relation of mixture formation, burning process and flame development of biodiesel were investigated in detail. The parameters include equivalent ratio, water content and mixture formation are studied. The flame development is analyzed in term of flame longest for testing. The result shows that equivalent ratio and water content affect the combustion. Increasingly of water content will reduce the flame length and increase the probability of misfire.
The use of fossil fuels as energy sources has grown to significantly be likely to have a major environmental impact. Reduction of world oil reserves and increasing environmental concerns have prompted alternative is found and renewable source of energy called biodiesel. Biodiesel fuel from vegetable oil is considered as the best candidates for diesel fuel replacement in diesel engines because of its closer. Fuel prices are going up day by day in the world. Thus, the means and methods have been trying for years to get fuel alternative outcomes. This study investigated the effects of different storage periods used in quality biodiesel blends (B5, B10, B15) of waste cooking oil and diesel fuel under low temperature and the temperature of the environment. Biodiesel samples were stored in glass containers under indoor conditions, and outdoor conditions for 10 weeks in total. These samples were monitored on a weekly basis through the test properties. The experimental density, viscosity, acid value, water content and flash point were discussed in detail. Biodiesel storage at low temperatures is suitable and more advantageous because the impact on the physical properties is minimal and beneficial to slow down the degradation of biodiesel and storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.