Accumulating data suggest that metastatic dissemination often occurs early during tumour formation but the mechanisms of early metastatic spread have not yet been addressed. Here, we studied metastasis in a HER2-driven mouse breast cancer model and found that progesterone-induced signalling triggered migration of cancer cells from early lesions shortly after HER2 activation, but promoted proliferation in advanced primary tumour cells. The switch from migration to proliferation was regulated by elevated HER2 expression and increased tumour cell density involving miRNA-mediated progesterone receptor (PGR) down-regulation and was reversible. Cells from early, low-density lesions displayed more stemness features than cells from dense, advanced tumours, migrated more and founded more metastases. Strikingly, we found that at least 80% of metastases were derived from early disseminated cancer cells (DCC). Karyotypic and phenotypic analysis of human disseminated cancer cells and primary tumours corroborated the relevance of these findings for human metastatic dissemination.
During microRNA (miRNA) biogenesis, two endonucleolytic reactions convert stem-loop-structured precursors into mature miRNAs. These processing steps can be posttranscriptionally regulated by RNA-binding proteins (RBPs). Here, we have used a proteomics-based pull-down approach to map and characterize the interactome of a multitude of pre-miRNAs. We identify ∼180 RBPs that interact specifically with distinct pre-miRNAs. For functional validation, we combined RNAi and CRISPR/Cas-mediated knockout experiments to analyze RBP-dependent changes in miRNA levels. Indeed, a large number of the investigated candidates, including splicing factors and other mRNA processing proteins, have effects on miRNA processing. As an example, we show that TRIM71/LIN41 is a potent regulator of miR-29a processing and its inactivation directly affects miR-29a targets. We provide an extended database of RBPs that interact with pre-miRNAs in extracts of different cell types, highlighting a widespread layer of co- and posttranscriptional regulation of miRNA biogenesis.
During microRNA (miRNA)-guided gene silencing, Argonaute (Ago) proteins interact with a member of the TNRC6/GW protein family. Here we used a short GW protein-derived peptide fused to GST and demonstrate that it binds to Ago proteins with high affinity. This allows for the simultaneous isolation of all Ago protein complexes expressed in diverse species to identify associated proteins, small RNAs, or target mRNAs. We refer to our method as “Ago protein Affinity Purification by Peptides“ (Ago-APP). Furthermore, expression of this peptide competes for endogenous TNRC6 proteins, leading to global inhibition of miRNA function in mammalian cells.
Chitin is a key component in mollusk nacre formation. However, the enzyme complex responsible for chitin deposition in the mollusk shell remained unknown. We cloned and characterized the chitin synthase of the marine bivalve mollusk Atrina rigida. We present here the first chitin synthase sequence from invertebrates containing an unconventional myosin motor head domain. We further show that a homologous gene for chitin synthase is expressed in the shell forming tissue of larval Mytilus galloprovincialis even in early embryonic stages. The new data presented here are the first clear-cut indication for a functional role of cytoskeletal forces in the precisely controlled mineral deposition process of mollusk shell biogenesis.
We determined the effect of p53 activation on de novo protein synthesis using quantitative proteomics (pulsed stable isotope labeling with amino acids in cell culture/ pSILAC) in the colorectal cancer cell line SW480. This was combined with mRNA and noncoding RNA expression analyses by next generation sequencing (RNA-, miR-Seq). The p53 gene encodes a tumor-suppressive protein, which is activated by DNA damage, but also by other types of cellular stress (1). p53 functions as a transcription factor that regulates the expression of numerous genes, which mediate cell cycle arrest, senescence and apoptosis, or suppress epithelial-mesenchymal-transition (EMT) 1 and metastasis (2-4). p53 is mutated in at least 50% of human cancers with From the ‡Experimental and Molecular Pathology, Institute of Pathology,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.