Soil compaction is a human-induced threat which negatively affects soil functions and is highly dependent on site-specific soil conditions and land use patterns. Proper management techniques are indispensable for sustainable soil protection to ensure its function in the long term. A number of concepts exist to develop risk maps on the basis of soil inherent susceptibility to compaction at a given soil moisture level (mostly field capacity). However, the real soil conditions, e.g., current soil moisture content at the time of field work and the real machinery load, are not taken into account. To bridge this gap, we present a multi-data approach for qualitative risk assessment, which combines spatially and temporally explicit data on soil, soil moisture, and land use information. The contributing components integrate daily probability distribution, including inter- and intra-annual variations in land use and weather. We combined soil susceptibility to compaction and field work for the federal state of Lower Saxony per half-months and identified three clusters with more or less compaction risk for Lower Saxony. In spring, mainly manure spreading to maize and in autumn harvesting of maize and sugar beets are contributing to the yearly probability of compaction risk in top soils. With the presented approach risk areas can be identified. For the evaluation of the current compaction risks, farm specifications on machinery and timing of field work must also be taken into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.