The clinical syndromes of thromboembolism are evoked by an excessive stimulation of the coagulation cascade. In this context, the serine protease thrombin plays a key role. Considerable efforts have therefore been devoted to the discovery of safe, orally active inhibitors of this enzyme. On the basis of the X-ray crystal structure of the peptidelike thrombin inhibitor NAPAP complexed with bovine thrombin, we have designed a new structural class of nonpeptidic inhibitors employing a 1,2,5-trisubstituted benzimidazole as the central scaffold. Supported by a series of X-ray structure analyses, we optimized the activity of these compounds. Thrombin inhibition in the lower nanomolar range could be achieved although the binding energy mainly results from nonpolar, hydrophobic interactions. To improve in vivo potency, we increased the overall hydrophilicity of the molecules by introducing carboxylate groups. The very polar compound 24 (BIBR 953) exhibited the most favorable activity profile in vivo. This zwitterionic molecule was converted into the double-prodrug 31 (BIBR 1048), which showed strong oral activity in different animal species. On the basis of these results, 31 was chosen for clinical development.
Telomerase, the ribonucleoprotein enzyme maintaining the telomeres of eukaryotic chromosomes, is active in most human cancers and in germline cells but, with few exceptions, not in normal human somatic tissues. Telomere maintenance is essential to the replicative potential of malignant cells and the inhibition of telomerase can lead to telomere shortening and cessation of unrestrained proliferation. We describe novel chemical compounds which selectively inhibit telomerase in vitro and in vivo. Treatment of cancer cells with these inhibitors leads to progressive telomere shortening, with no acute cytotoxicity, but a proliferation arrest after a characteristic lag period with hallmarks of senescence, including morphological, mitotic and chromosomal aberrations and altered patterns of gene expression. Telomerase inhibition and telomere shortening also result in a marked reduction of the tumorigenic potential of drug-treated tumour cells in a mouse xenograft model. This model was also used to demonstrate in vivo efficacy with no adverse side effects and uncomplicated oral administration of the inhibitor. These findings indicate that potent and selective, non-nucleosidic telomerase inhibitors can be designed as novel cancer treatment modalities.
Telmisartan is a potent, long-lasting, nonpeptide antagonist of the angiotensin II type-1 (AT 1 ) receptor that is indicated for the treatment of essential hypertension. It selectively and insurmountably inhibits stimulation of the AT 1 receptor by angiotensin II without affecting other receptor systems involved in cardiovascular regulation. Very high lipophilicity, a unique feature of telmisartan, coupled with a high volume of distribution, indicate that the compound offers the clinically important advantage of good tissue penetration. Telmisartan is not a prodrug and has a longer terminal elimination half-life than other commercially available sartans (~24 h), making it suitable for once-daily dosing. The compound is not metabolized by cytochrome P450 isoenzymes and has a low risk for P450-based drug interactions. In animal models, telmisartan exhibits pronounced cardioand reno-protective effects in animals with severe, essential hypertension. In clinical studies, telmisartan shows comparable antihypertensive activity to members of other major antihypertensive classes, such as ACE inhibitors, beta blockers and calcium antagonists. These trials have confirmed the placebo-like safety and tolerability of telmisartan in hypertensive patients. Based on these data, telmisartan offers advantages over other sartans and represents an important new treatment option for hypertension.
Telomerase, a ribonucleoprotein acting as a reverse transcriptase, has been identified as a target for cancer drug discovery. The synthetic, non-nucleosidic compound, BIBR1532, is a potent and selective telomerase inhibitor capable of inducing senescence in human cancer cells (1). In the present study, the mode of drug action was characterized. BIBR1532 inhibits the native and recombinant human telomerase, comprising the human telomerase reverse transcriptase and human telomerase RNA components, with similar potency primarily by interfering with the processivity of the enzyme. Enzyme-kinetic experiments show that BIBR1532 is a mixed-type non-competitive inhibitor and suggest a drug binding site distinct from the sites for deoxyribonucleotides and the DNA primer, respectively. Thus, BIBR1532 defines a novel class of telomerase inhibitor with mechanistic similarities to non-nucleosidic inhibitors of HIV1 reverse transcriptase.
Starting from the recently reported nonpeptidic angiotensin II (AII) receptor antagonists DuP753 (1) and Exp 7711 (2), we have designed and investigated novel substituted benzimidazoles. Systemic variation of several substituents at the benzimidazole ring positions 4-7 led to the finding that substitution in position 6 with acylamino groups results in highly active AII antagonists. Compounds with 6-membered lactam or sultam substituents in position 6 of benzimidazole showed receptor activities in the low nanomolar range but were only weakly active when given orally to rats. In contrast, analogous substitution of the benzimidazole moiety with basic heterocycles resulted in potent AII antagonists which were also well absorbed after oral application. The most active compound of this series, 33 (BIBR 277), was selected as a candidate for clinical development. On the basis of molecular modeling studies a binding model of this new class of AII antagonists to the AT1 receptor is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.