Metabolic labeling experiments followed by immunoprecipitation were performed to investigate the kinetics, location and inhibitor sensitivity of degradation of both wild‐type (wt) and mutant (delta F508) cystic fibrosis conductance transmembrane regulator (CFTR). At the earliest stages of the biosynthetic process, both wt and delta F508 CFTR were found to be susceptible to degradation by endogenous proteases. Virtually all delta F508 CFTR and 45‐80% of wt CFTR were rapidly degraded with a similar half‐life (t1/2 approximately 0.5 h). The remaining wt CFTR attained a protease‐resistant configuration regardless of whether traffic between the endoplasmic reticulum (ER) and Golgi was operational. Metabolic energy is required for the conformational transition, but not to maintain the stability of the protease‐resistant wt CFTR. Intracellular degradation of delta F508 CFTR and of incompletely folded wt CFTR occurs in a non‐lysosomal, pre‐Golgi compartment, as indicated by the sensitivity of proteolysis to different inhibitors and temperature. Accordingly, products of the degradation of delta F508 CFTR could be detected by immunoblotting in isolated ER, but not in the Golgi. Together, these results suggest a dynamic equilibrium between two forms of wt CFTR in the ER: an incompletely folded, protease‐sensitive form which is partially converted by an ATP‐dependent process to a more mature form that is protease‐resistant and capable of leaving the ER. The inability delta F508 CFTR to undergo such a transition renders it susceptible to complete and rapid degradation in a pre‐Golgi compartment.
The plasma membranes of hamster, mouse, and human tumor cell lines that display multiple resistance to drugs were examined by gel electrophoresis and immunoblotting. In every case, increased expression of a 170,000-dalton surface antigen was found to be correlated with multidrug resistance. This membrane component is of identical molecular size and shares some immunogenic homology with the previously characterized P-glycoprotein of colchicine-resistant Chinese hamster ovary cells. This finding may have application to cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.