Dysphagia is a swallowing disorder characterized by the difficulty in transferring solid foods and/or liquids from the oral cavity to the stomach, imparing autonomous, and safe oral feeding. The main problems deriving from dysphagia are tracheo-bronchial aspiration, aspiration pneumonia, malnutrition and dehydration. In order to overcome dysphagia-induced problems, over the years water and food thickening has been used, focusing specifically on viscosity increase, but limited results have been obtained. Elastic components and their effects on the cohesiveness on the bolus should be taken into account in the first place. We provide an analysis of dysphagia and suggest possible corrections to the protocols which are being used at present, taking into account rheological properties of food and the effect of saliva on the bolus. We reckon that considering such aspects in the dysphagia management market and healthcare catering would result in significant clinical risk reduction.
The proposed architecture could improve the potentialities of data routinely collected in many health information systems to form a real patient center information environment.
Prevention and surveillance of healthcare associated infections caused by multidrug resistant organisms (MDROs) has been given increasing attention in recent years and is nowadays a major priority for health care systems. The creation of automated regional, national and international surveillance networks plays a key role in this respect. A surveillance system has been designed for the Abruzzo region in Italy, focusing on the monitoring of the MDROs prevalence in patients, on the appropriateness of antibiotic prescription in hospitalized patients and on foreseeable interactions with other networks at national and international level. The system has been designed according to the Service Oriented Architecture (SOA) principles, and Healthcare Service Specification (HSSP) standards and Clinical Document Architecture Release 2 (CDAR2) have been adopted. A description is given with special reference to implementation state, specific design and implementation choices and next foreseeable steps. The first release will be delivered at the Complex Operating Unit of Infectious Diseases of the Local Health Authority of Pescara (Italy).
The focal adhesion pathway has a great impact on cellular growth and survival. Its disregulation is correlated with the loss of cellular mechanical properties. Such modifications are, in many cases, associated with pathologies such as cancer and cardiovascular diseases. Actin remodeling is a critical reaction cascade embedded in focal adhesion pathway, and Rac1 is one of the proteins involved in actin remodeling. In order to design highly selective pharmacophores against this target, it is necessary to maximize the binding affinity of chemical entities against Rac1. To this purpose we propose an integrative chemo-bioinformatics tool to screen ligand specificity for a target protein. Our integrative workflow includes chemo-informatics data mining (Chemical System), structural bioinformatics and combined exploratory data analysis. We have applied this integrative chemo-bioinformatics workflow to a comparative analysis of three different classes of ligands (morpholines, flavonoids and imidazoles) against the Rac1 protein. Our analysis emphasizes the presence of several ligands that preferentially dock Rac1 in the domain that seems to be responsible for Rac1-phospholipase C gamma 1 interaction. Recent studies have highlighted the Rac1 and PLC interactions in platelet adhesion. Our study has highlighted the role of Rac1-PLC gamma1 interaction in cytoskeleton remodeling associated with cardiovascular diseases. Rac1 PLC interaction is Calcium dependent. This suggest that some of the analysed ligands, could be used to control the Calcium dependent cytoskeleton remodeling since they dock Rac1 in the switch 2 domain. Our results, in a nanotechnology perspective, also endorse the use Rac1's switch 2 domain suitable for new highly specific biosensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.