Our work provides unprecedented insight into the architecture of the centriole proximal region, which is key for a thorough understanding of the mechanisms governing centriole assembly.
Background: Centrioles are cylindrical microtubule-based structures whose assembly is critical for the formation of cilia, flagella, and centrosomes. The centriole proximal region harbors a cartwheel that dictates the 9-fold symmetry of centrioles. Although the cartwheel architecture has been recently analyzed, how it connects to the peripheral microtubules is not understood. More generally, a high-resolution view of the proximal region of the centriole is lacking, thus limiting understanding of the underlying assembly mechanisms. Results: We report the complete architecture of the Trichonympha centriole proximal region using cryotomography. The resulting 3D map reveals several features, including additional densities in the cartwheel that exhibit a 9-fold symmetrical arrangement, as well as the structure of the Pinhead and the A-C linker that connect to microtubules. Moreover, we uncover striking chiral features that might impart directionality to the entire centriole. Furthermore, we identify Trichonympha SAS-6 and demonstrate that it localizes to the cartwheel in vivo. Conclusions: Our work provides unprecedented insight into the architecture of the centriole proximal region, which is key for a thorough understanding of the mechanisms governing centriole assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.