SignificanceNorth American and European countries built many large dams until 1975, after which both started to abandon a significant part of their installed hydropower because of the negative social and environmental impacts. However, there has been a recent trend of new large hydropower dams being built in developing countries, particularly in megabiodiversity river basins, such as the Amazon, the Congo, and the Mekong. The socioeconomic and environmental damages in these river systems are even greater than the early costs in North America and Europe. This paper discusses how the hydropower sector needs to not only focus on energy production but also, include the negative social and environmental externalities caused by dams and recognize the unsustainability of current common practices.
Advanced control systems require accurate process models, while processes are often both nonlinear and time variant. After introducing the identification of nonlinear processes with grid-based look-up tables, a new learning algorithm for on-line adaptation of look-up tables is proposed. Using a linear regression approach, this new adaptation algorithm considerably reduces the convergence time in relation to conventional gradient-based adaptation algorithms. An application example and experimental results are shown for the learning feedforward control of the ignition angle of a spark ignition engine.
The effects of surface texture on the lubrication performance of a compression ring-cylinder liner system are studied in this paper. By considering the surface roughness of the compression ring and cylinder liner, a mixed lubrication model is presented to investigate the tribological behaviors of a barrel-shaped compression ring-cylinder liner system with spherical dimples on the liner. In order to determine the rupture and reformulation positions of fluid film accurately, the Jacoboson-Floberg-Olsson (JFO) cavitation boundary condition is applied to the mixed lubrication model for ensuring the mass-conservative law. On this basis, the minimum oil film thickness and average friction forces in the compression ring-cylinder liner system are investigated under the engine-like conditions by changing the dimple area density, radius, and depth. The wear load, average friction forces, and power loss of the compression ring-cylinder liner system with and without dimples are also compared for different compression ring face profiles. The results show that the spherical dimples can produce a larger reduction of friction in mixed lubrication region, and reduce power loss significantly in the middle of the strokes. In addition, higher reduction percentages of average friction forces and wear are obtained for smaller crown height or larger axial width.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.