BackgroundHuman leukocyte antigen matching at allelic resolution is proven clinically significant in hematopoietic stem cell transplantation, lowering the risk of graft-versus-host disease and mortality. However, due to the ever growing HLA allele database, tissue typing laboratories face substantial challenges. In light of the complexity and the high degree of allelic diversity, it has become increasingly difficult to define the classical transplantation antigens at high-resolution by using well-tried methods. Thus, next-generation sequencing is entering into diagnostic laboratories at the perfect time and serving as a promising tool to overcome intrinsic HLA typing problems. Therefore, we have developed and validated a scalable automated HLA class I and class II typing approach suitable for diagnostic use.ResultsA validation panel of 173 clinical and proficiency testing samples was analysed, demonstrating 100% concordance to the reference method. From a total of 1,273 loci we were able to generate 1,241 (97.3%) initial successful typings. The mean ambiguity reduction for the analysed loci was 93.5%. Allele assignment including intronic sequences showed an improved resolution (99.2%) of non-expressed HLA alleles.ConclusionWe provide a powerful HLA typing protocol offering a short turnaround time of only two days, a fully integrated workflow and most importantly a high degree of typing reliability. The presented automated assay is flexible and can be scaled by specific primer compilations and the use of different 454 sequencing systems. The workflow was successfully validated according to the policies of the European Federation for Immunogenetics. Next-generation sequencing seems to become one of the new methods in the field of Histocompatibility.
Our data suggest that next-generation sequencing offers a new development for high-throughput and clonal sequencing for molecular RHD genotyping. However, further attempts in the methodical set-up have to be undertaken prior to validation and introduction as a routine service.
An emerging problem in patients with Philadelphia (Ph)-positive leukaemias is the occurrence of cells with multiple mutations in the BCR-ABL1 tyrosine kinase domain (TKD) associated with high resistance to different tyrosine kinase inhibitors. Rapid and sensitive detection of leukaemic subclones carrying such changes, referred to as compound mutations, is therefore of increasing clinical relevance. However, current diagnostic methods including next generation sequencing (NGS) of short fragments do not optimally meet these requirements. We have therefore established a long-range (LR) NGS approach permitting massively parallel sequencing of the entire TKD length of 933bp in a single read using 454 sequencing with the GS FLX+ instrument (454 Life Sciences). By testing a series of individual and consecutive specimens derived from six patients with chronic myeloid leukaemia, we demonstrate that long-range NGS analysis permits sensitive identification of mutations and their assignment to the same or to separate subclones. This approach also facilitates readily interpretable documentation of insertions and deletions in the entire BCR-ABL1 TKD. The long-range NGS findings were reevaluated by an independent technical approach in select cases. Polymerase chain reaction (PCR) amplicons of the BCR-ABL1 TKD derived from individual specimens were subcloned into pGEM®-T plasmids, and >100 individual clones were subjected to analysis by Sanger sequencing. The NGS results were confirmed, thus documenting the reliability of the new technology. Long-range NGS analysis therefore provides an economic approach to the identification of compound mutations and other genetic alterations in the entire BCR-ABL1 TKD, and represents an important advancement of the diagnostic armamentarium for rapid assessment of impending resistant disease.
Background: Cutaneous squamous cell carcinomas (cSCC) are the primary cause of premature deaths in patients suffering from the rare skin-fragility disorder recessive dystrophic epidermolysis bullosa (RDEB), which is in marked contrast to the rarely metastasizing nature of these carcinomas in the general population. This remarkable difference is attributed to the frequent development of chronic wounds caused by impaired skin integrity. However, the specific molecular and cellular changes to malignancy, and whether there are common players in different types of aggressive cSCCs, remain relatively undefined. Methods: MiRNA expression profiling was performed across various cell types isolated from skin and cSCCs. Microarray results were confirmed by qPCR and by an optimized in situ hybridization protocol. Functional impact of overexpression or knockout of a dysregulated miRNA was assessed in migration and 3D-spheroid assays. Samplematched transcriptome data was generated to support the identification of disease relevant miRNA targets. Results: Several miRNAs were identified as dysregulated in cSCCs compared to control skin. These included the metastasis-linked miR-10b, which was significantly upregulated in primary cell cultures and in archival biopsies. At the functional level, overexpression of miR-10b conferred the stem cell-characteristic of 3D-spheroid formation capacity to keratinocytes. Analysis of miR-10b downstream effects identified a novel putative target of miR-10b, the actin-and tubulin cytoskeleton-associated protein DIAPH2. Conclusion: The discovery that miR-10b mediates an aspect of cancer stemnessthat of enhanced tumor cell adhesion, known to facilitate metastatic colonizationprovides an important avenue for future development of novel therapies targeting this metastasis-linked miRNA.
BackgroundNext-generation sequencing (NGS) has changed genomics significantly. More and more applications strive for sequencing with different platforms. Now, in 2012, after a decade of development and evolution, NGS has been accepted for a variety of research fields. Determination of sequencing errors is essential in order to follow next-generation sequencing beyond research use only. This study describes the overall 454 system performance of using multiple GS Junior runs with an in-house established and validated diagnostic assay for human leukocyte antigen (HLA) exon sequencing. Based on this data, we extracted, evaluated and characterized errors and variants of 60 HLA loci per run with respect to their adjacencies.ResultsWe determined an overall error rate of 0.18% in a total of 118,484,408 bases. 31.3% of all reads analyzed (n=349,503) contain one or more errors. The largest group are deletions that account for 50% of the errors. Incorrect bases are not distributed equally along sequences and tend to be more frequent at sequence ends. Certain sequence positions in the middle or at the beginning of the read accumulate errors. Typically, the corresponding quality score at the actual error position is lower than the adjacent scores.ConclusionsHere we present the first error assessment in a human next-generation sequencing diagnostics assay in an amplicon sequencing approach. Improvements of sequence quality and error rate that have been made over the years are evident and it is shown that both have now reached a level where diagnostic applications become feasible. Our presented data are better than previously published error rates and we can confirm and quantify the often described relation of homopolymers and errors. Nevertheless, a certain depth of coverage is needed, in particular with challenging areas of the sequencing target. Furthermore, the usage of error correcting tools is not essential but might contribute towards the capacity and efficiency of a sequencing run.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.