The conformation of oligomers of beta-amino acids of the general type Ac-[beta-Xaa]n-NHMe (beta-Xaa = beta-Ala, beta-Aib, and beta-Abu; n = 1-4) was systematically examined at different levels of ab initio molecular orbital theory (HF/6-31G*, HF/3-21G). The solvent influence was considered employing two quantum-mechanical self-consistent reaction field models. The results show a wide variety of possibilities for the formation of characteristic elements of secondary structure in beta-peptides. Most of them can be derived from the monomer units of blocked beta-peptides with n = 1. The stability and geometries of the beta-peptide structures are considerably influenced by the side-chain positions, by the configurations at the C alpha- and C beta-atoms of the beta-amino acid constituents, and especially by environmental effects. Structure peculiarities of beta-peptides, in particular those of various helix alternatives, are discussed in relation to typical elements of secondary structure in alpha-peptides.
Objective One of the most important hormones in the human stomach is the peptide gastrin. It is mainly required for the regulation of gastric pH but is also involved in growth and differentiation of gastric epithelial cells. In Helicobacter pylori infected patients, gastrin secretion can be upregulated by the pathogen, resulting in hypergastrinaemia. H pylori induced hypergastrinaemia is described as being a major risk factor for the development of gastric adenocarcinoma. Design In this study, the upstream receptor complex and bacterial factors involved in H pylori induced gastrin gene expression were investigated, utilising gastric epithelial cells which were stably transfected with a human gastrin promoter luciferase reporter construct.Results Integrin linked kinase (ILK) and integrin b5, but not integrin b1, played an important role in gastrin promoter activation. Interestingly, a novel CagL/integrin b5/ILK signalling complex was characterised as being important for H pylori induced gastrin expression. On interaction of H pylori with avb 5 -integrin and ILK, the epidermal growth factor receptor (EGFR) /Raf/mitogen activated protein kinase kinase (MEK)/extracellular signal regulated kinase (Erk) downstream signalling cascade was identified which plays a central role in H pylori gastrin induction. Conclusion The newly discovered recognition receptor complex could be a useful target in treating precancerous conditions triggered by H pylori induced hypergastrinaemia.
Changes in the elastic properties of single deoxyribonucleic acid (DNA) molecules in the presence of different DNA-binding agents are identified using atomic force microscope single molecule force spectroscopy. We investigated the binding of poly(dG-dC) dsDNA with the minor groove binder distamycin A, two supposed major groove binders, an alpha-helical and a 3(10)-helical peptide, the intercalants daunomycin, ethidium bromide and YO, and the bis-intercalant YOYO. Characteristic mechanical fingerprints in the overstretching behavior of the studied single DNA-ligand complexes were observed allowing the distinction between different binding modes. Docking of ligands to the minor or major groove of DNA has the effect that the intramolecular B-S transition remains visible as a distinct plateau in the force-extension trace. By contrast, intercalation of small molecules into the double helix is characterized by the vanishing of the B-S plateau. These findings lead to the conclusion that atomic force microscope force spectroscopy can be regarded as a single molecule biosensor and is a potent tool for the characterization of binding motives of small ligands to DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.