The aim of this study was to investigate the protective effect of isothiocyanates towards N-nitrosamine-induced DNA damage in the single-cell gel electrophoresis (SCGE)/HepG2 assay. None of the isothiocyanates (ITCs) concentrations tested in the presence or absence of formamidopyrimidine-DNA glycosylase (Fpg) caused DNA damage per se. Combined treatments of HepG2 cells with phenethyl isothiocyanate (PEITC), allyl isothiocyanate (AITC) or indol-3-carbinol (I3C) and N-nitrosopyrrolidine (NPYR) or N-nitrosodimethylamine (NDMA) reduced the genotoxic effects of the N-nitrosamines in a dose-dependent manner. The protective effect of the three ITCs tested was higher towards NPYR-induced oxidative DNA damage than against NDMA. The greatest protective effect towards NPYR-induced oxidative DNA damage was shown by I3C (1 microM, 79%) and by PEITC (1 microM, 67%) and I3C (1 microM, 61%) towards NDMA (in presence of Fpg enzyme). However, in absence of Fpg enzyme, AITC (1 microM, 72%) exerted the most drastic reduction towards NPYR-induced oxidative DNA damage, and PEITC (1 microM, 55%) towards NDMA. Our results indicate that ITCs protect human-derived cells against the DNA damaging effect of NPYR and NDMA, two carcinogenic compounds that occur in the environment.
The aim of this work was to determine the effect of vitamin C, diallyl disulfide (DADS) and dipropyl disulfide (DPDS) towards N-nitrosopiperidine (NPIP) and N-nitrosodibutylamine (NDBA)-induced apoptosis in human leukemia (HL-60) and hepatoma (HepG2) cell lines using the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. None of the vitamin C (5-50 microm), DADS and DPDS (1-5 microm) concentrations selected induced a significant percentage of apoptosis. In simultaneous treatments, vitamin C, DADS and DPDS reduced the apoptosis induced by NPIP and NDBA in HL-60 and HepG2 cells (around 70% of reduction). We also investigated its scavenging activities towards reactive oxygen species (ROS) produced by NPIP and NDBA using 2',7'-dichlorodihydrofluorescein diacetate in both cell lines. ROS production induced by both N-nitrosamine was reduced to control levels by vitamin C (5-50 microm) in a dose-dependent manner. However, DADS (5 microm) increased ROS levels induced by NPIP and NDBA in HL-60 (40 and 20% increase, respectively) and HepG2 cells (18% increase), whereas DPDS was more efficient scavenger of ROS at the lowest concentration (1 microm) in both HL-60 (52 and 25% reduction, respectively) and HepG2 cells (24% reduction). The data demonstrated that the scavenging ability of vitamin C and DPDS could contribute to inhibition of the NPIP- and NDBA-induced apoptosis. However, more than one mechanism, such as inhibition of phase I and/or induction of phase II enzymes, could be implicated in the protective effect of dietary antioxidants towards NPIP- and NDBA-induced apoptosis in HL-60 and HepG2 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.