Data stored in physical storage or transferred over a communication channel includes substantial redundancy. Compression techniques cut down the data redundancy to reduce space and communication time. Nevertheless, compression techniques lack proper security measures, e.g., secret key control, leaving the data susceptible to attack. Data encryption is therefore needed to achieve data security in keeping the data unreadable and unaltered through a secret key. This work concentrates on the problems of data compression and encryption collectively without negatively affecting each other. Towards this end, an efficient, secure data compression technique is introduced, which provides cryptographic capabilities for use in combination with an adaptive Huffman coding, pseudorandom keystream generator, and S-Box to achieve confusion and diffusion properties of cryptography into the compression process and overcome the performance issues. Thus, compression is carried out according to a secret key such that the output will be both encrypted and compressed in a single step. The proposed work demonstrated a congruent fit for real-time implementation, providing robust encryption quality and acceptable compression capability. Experiment results are provided to show that the proposed technique is efficient and produces similar space-saving (%) to standard techniques. Security analysis discloses that the proposed technique is susceptible to the secret key and plaintext. Moreover, the ciphertexts produced by the proposed technique successfully passed all NIST tests, which confirm that the 99% confidence level on the randomness of the ciphertext.
Data compression and encryption are key components of commonly deployed platforms such as Hadoop. Numerous data compression and encryption tools are presently available on such platforms and the tools are characteristically applied in sequence, i.e., compression followed by encryption or encryption followed by compression. This paper focuses on the open-source Hadoop framework and proposes a data storage method that efficiently couples data compression with encryption. A simultaneous compression and encryption scheme is introduced that addresses an important implementation issue of source coding based on Tent Map and Piece-wise Linear Chaotic Map (PWLM), which is the infinite precision of real numbers that result from their long products. The approach proposed here solves the implementation issue by removing fractional components that are generated by the long products of real numbers. Moreover, it incorporates a stealth key that performs a cyclic shift in PWLM without compromising compression capabilities. In addition, the proposed approach implements a masking pseudorandom keystream that enhances encryption quality. The proposed algorithm demonstrated a congruent fit within the Hadoop framework, providing robust encryption security and compression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.