Populations in upstream versus downstream river locations can be exposed to vastly different environmental and ecological conditions and can thus harbor different genetic resources due to selection and neutral processes. An interesting question is how upstream–downstream directionality in rivers affects the evolution of immune response genes. We used next‐generation amplicon sequencing to identify eight alleles of the major histocompatibility complex (MHC) class II β exon 2 in the cyprinid longnose dace (Rhinichthys cataractae) from three rivers in Alberta, upstream and downstream of municipal and agricultural areas along contaminant gradients. We used these data to test for directional and balancing selection on the MHC. We also genotyped microsatellite loci to examine neutral population processes in this system. We found evidence for balancing selection on the MHC in the form of increased nonsynonymous variation relative to neutral expectations, and selection occurred at more amino acid residues upstream than downstream in two rivers. We found this pattern despite no population structure or isolation by distance, based on microsatellite data, at these sites. Overall, our results suggest that MHC evolution is driven by upstream–downstream directionality in fish inhabiting this system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.