A series of novel synthetic dipeptides, containing a C-terminal glyoxal grouping (-COCHO), have been tested as inhibitors against typical members of the serine- and cysteine-proteinase families. For example, the sequences benzyloxycarbonyl (Cbz)-Pro-Phe-CHO (I) and Cbz-Phe-Ala-CHO (II), which fulfil the known primary and secondary specificity requirements of chymotrypsin and cathepsin B respectively, have been found to be potent reversible inhibitors of their respective target proteinase. Thus I was found to inhibit chymotrypsin with a Ki of approximately 0.8 microM, whereas II exhibits a Ki of approximately 80 nm against cathepsin B. These Ki values are some 10-fold and 3-fold lower than those reported for the corresponding peptide-aldehyde inhibitors of chymotrypsin and cathepsin B upon which the peptidyl-glyoxals were fashioned. Unexpectedly, the sequence Cbz-Pro-Ala-CHO, which was designed to inhibit elastase-like proteinases, exhibited no inhibitory activity towards porcine pancreatic elastase, even when used at concentrations as high as 200 microM.
Homochiral N-protected a-amino glyoxals are readily accessible by oxidation of a-diazoketones derived from natural amino acids and dipeptides using dimethyldioxirane in acetone; the glyoxals can be trapped efficiently in reactions such as Wittig olefination and condensation with amines and vicinal diamines.Without functional group protection amino glyoxals of type 1 would be expected to undergo spontaneous polymerisation. With appropriate N-protection they should be reasonably stable, yet amenable to a range of useful synthetic transformations through the highly electrophilic aldehyde group. They are , for example, potential precursors of hydrolytically stable pseudopeptides or peptide isosteres.1We have developed a general route (Scheme 1) to amino glyoxals in the N-protected form 2 from a range of L-amino acids. The route is equally applicable to any N-protected peptide with a free carboxylic acid group and the reaction conditions appear to tolerate most forms of N-protection. So far we have successfully employed Boc, Z, phthaloyl and ethoxycarbonyl groups. The N-protected amino acids and dipeptides 3 shown in Table 1 were transformed into the corresponding diazoketones 4 using standard procedures.* The key step in the sequence was oxidation of the diazoketones to glyoxals 2 using distilled dimethyldioxirane (DMD) 5 in acetone,3.4 a process recently reported for simple achiral 0 1 Me Me x:5
A series of synthetic peptides in which the C-terminal carboxyl grouping (-CO(2)H) of each has been chemically converted into a variety of ene dione derivatives (-CO-CH=CH-CO-X; X = -H, -Me, -OBut, -OEt, -OMe, -CO-OMe), have been prepared and tested as inactivators against typical members of the serine and cysteine protease families. For example, the sequences Cbz-Pro-Phe-CH=CH-CO-OEt (I) which fulfils the known primary and secondary specificity requirements of the serine protease chymotrypsin, and Cbz-Phe-Ala-CH=CH-CO-OEt (II) which represents a general recognition sequence for cysteine proteases such as cathepsins B, L and S, have been tested as putative irreversible inactivators of their respective target proteases. It was found that, whereas II, for example, functioned as a time-dependent, irreversible inactivator of each of the cysteine proteases, I behaved only as a modest competitive reversible inhibitor of chymotrypsin. Within the simple ester sequences Cbz-Phe-Ala-CH=CH-CO-R, the rank order of inhibitor effectiveness decreases in the order R = -OMe > -OEt >> -OBut. It was also found that the presence of both an unsaturated double bond and an ester (or alpha-keto ester) moiety were indispensable for obtaining irreversible inactivators. Of the irreversible inactivators synthesized, Cbz-Phe-Ala-CH=CH-CO-CO-OEt (which contains a highly electrophilic alpha-keto ester grouping) was found to be the most effective exhibiting, for example, second-order rate constants of approximately 1.7 x 10(6)M(-1)min(-1) and approximately 4.9 x 10(4)M(-1)min(-1) against recombinant human cathepsin S and human spleenic cathepsin B, respectively. This initial study thus holds out the promise that this class of inactivator may well be specific for the cysteine protease subclass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.