Mammogram tissue density has been found to be a strong indicator for breast cancer risk. Efforts in computer vision of breast parenchymal pattern have been made in order to improve the diagnostic accuracy by radiologists. Motivated by recent results in mammogram tissue density classification, a novel methodology for automatic American College of Radiology Breast Imaging Reporting and Data System classification using local binary pattern variance descriptor is presented in this article. The proposed approach characterizes the local density in different types of breast tissue patterns information into the LBP histogram. The performance of macro-calcification detection methods is developed using FARABI database. Performance results are given in terms of receiver operating characteristic. The area under curve of the corresponding approach has been found to be 79%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.