Electrical and electrochemical properties of silicon (Si) substituted NASICON-structured lithium stannum phosphate, Li1+ySn2P3-ySiyO12 with 0 < y < 1 that was prepared by the low-temperature water-based sol-gel method has been investigated. From the structural analysis, all samples in the system displayed rhombohedral symmetry. The total ionic conductivity, σt, and ionic mobility, µ was increased with the increase of silicon content, y. A high ionic conductivity value of 6.05 × 10-5 S cm-1 exhibited at y = 0.5 with a temperature of 500 °C. Linear sweep voltammetry analysis showed that the sample was electrochemically stable up to 5.1 V. Meanwhile, the ionic transference number value of the sample was 0.99, suggesting that the majority of mobile charge carriers were predominantly due to ions. Thus, from these results, it indicated that silicon substitution in LiSn2P3O12 ceramic electrolytes is significantly enhanced the electrical and electrochemical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.