BackgroundA reliable and inexpensive noninvasive marker of hepatic fibrosis is required in patients with nonalcoholic fatty liver disease (NAFLD). FIB4 index (based on age, aspartate aminotransferase [AST] and alanine aminotransferase [ALT] levels, and platelet counts) is expected to be useful for evaluating hepatic fibrosis. We validated the performance of FIB4 index in a Japanese cohort with NAFLD.MethodsThe areas under the receiver operating characteristic curves (AUROC) for FIB4 and six other markers were compared, based on data from 576 biopsy-proven NAFLD patients. Advanced fibrosis was defined as stage 3-4 fibrosis. FIB4 index was assessed as: age (yr) × AST (IU/L)/(platelet count (109/L) × √ALT (IU/L))ResultsAdvanced fibrosis was found in 64 (11%) patients. The AUROC for FIB4 index was superior to those for the other scoring systems for differentiating between advanced and mild fibrosis. Only 6 of 308 patients with a FIB4 index below the proposed low cut-off point (< 1.45) were under-staged, giving a high negative predictive value of 98%. Twenty-eight of 59 patients with a FIB4 index above the high cut-off point (> 3.25) were over-staged, giving a low positive predictive value of 53%. Using these cutoffs, 91% of the 395 patients with FIB-4 values outside 1.45-3.25 would be correctly classified. Implementation of the FIB4 index in the Japanese population would avoid 58% of liver biopsies.ConclusionThe FIB4 index was superior to other tested noninvasive markers of fibrosis in Japanese patients with NAFLD, with a high negative predictive value for excluding advanced fibrosis. The small number of cases of advanced fibrosis in this cohort meant that this study had limited power for validating the high cut-off point.
In this study we have characterized a novel human type II keratin, hK6irs1, which is specifically expressed in the inner root sheath of the hair follicle. This keratin represents the ortholog of the recently described mouse inner root sheath keratin mK6irs. The two keratins were highly related and migrated at the same height as keratin 6 in two-dimensional gel electrophoresis. Both RNA in situ hybridization and indirect immunofluorescence studies of human hair follicles demonstrated hK6irs1 expression in the Henle and Huxley layers as well as in the cuticle of the inner root sheath. In all three layers, the expression of hK6irs1 mRNA and protein began simultaneously in adjacent cells of the lowermost bulb above the germinative cell pool. Higher up in the follicle, the detection limits for both hK6irs1 mRNA and protein precisely coincided with the asynchronous onset of abrupt terminal differentiation of the Henle layer, inner root sheath cuticle, and Huxley layer. Mainly above the level of terminal Henle cell differentiation, both indirect immunofluorescence and immunoelectron microscopy revealed the occurrence of distinct Huxley cells that developed pseudopodal hK6irs1-positive extensions passing through the fully keratinized Henle layer. These outwardly protruding foot processes abutted upon cells of the companion layer, with which they were connected by numerous desmosomes. These specialized Huxley cells have previously been termed "Flügelzellen", which means "winged cells", with reference to their characteristic foot processes. We provide evidence that, together with Henle cells, Flügelzellen ensure the maintenance of a continuous desmosomal anchorage of the companion layer along the entire inner root sheath. This tightly connected companion layer/inner root sheath unit provides an optimal molding and guidance of the growing hair shaft.
The natural variation in starch synthase IIa (SSIIa) of rice (Oryza sativa L.) was characterised using near-isogenic lines (NILs). SSIIa is a candidate for the alk gene regulating the alkali disintegration of rice grains, since both genes are genetically mapped at the same position on chromosome 6 and related to starch properties. In this study, we report that the alkali-susceptible cultivar Nipponbare lacked SSIIa activity in endosperm. However, the activity was detected with NILs having the alk allele of alkali-tolerant Kasalath. SSIIa protein was present even in Nipponbare endosperm, but it was not associated with starch granules at the milky stage of endosperm. Three single-nucleotide polymorphisms (SNPs) predicting amino acid substitutions existed between the cDNA sequences of SSIIa of Nipponbare and Kasalath were genotyped with 65 rice cultivars and four wild relatives of cultivated rice. The results obtained explain the potential importance of two of the amino acid residues for starch association of rice SSIIa. An analysis of the chain-length distribution of -limit dextrin of amylopectin showed that without SSIIa activity, the relative number of A-chains (the short chains without branches) increased and that of B1-chains (the short chains with branches) decreased. This suggests that, given the SSIIa defect, short A-chains could not reach a sufficient length for branching enzymes to act on them to produce B1-chains.
Background: A reliable and inexpensive noninvasive marker of hepatic fibrosis is required in patients with nonalcoholic fatty liver disease (NAFLD). FIB4 index (based on age, aspartate aminotransferase [AST] and alanine aminotransferase [ALT] levels, and platelet counts) is expected to be useful for evaluating hepatic fibrosis. We validated the performance of FIB4 index in a Japanese cohort with NAFLD.
Methods:The areas under the receiver operating characteristic curves (AUROC) for FIB4 and six other markers were compared, based on data from 576 biopsy-proven NAFLD patients. Advanced fibrosis was defined as stage 3-4 fibrosis. FIB4 index was assessed as: age (yr) × AST (IU/L)/(platelet count (10 9 /L) × √ALT (IU/L))
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.