Reaction center preparations from the green sulfur bacterium Chlorobium tepidum, which contain monoheme cytochrome c, were studied by flash-absorption spectroscopy in the near-UV, visible, and near-infrared regions. The decay kinetics of the photooxidized primary donor P840(+), together with the amount of photooxidized cytochrome c, were analyzed along a series of four flashes spaced by 1 ms: 95% of the P840(+) was reduced by cytochrome c with a t(1/2) of approximately 65 micros after the first flash, 80% with a t(1/2) of approximately 100 micros after the second flash, and 23% with a t(1/2) of approximately 100 micros after the third flash; after the fourth flash, almost no cytochrome c oxidation occurred. The observed rates, the establishment of redox equilibrium after each flash, and the total amount of photooxidizable cytochrome c are consistent with the presence of two equivalent cytochrome c molecules per photooxidizable P840. The data are well fitted assuming a standard free energy change DeltaG degrees of -53 meV for electron transfer from one cytochrome c to P840(+), DeltaG degrees being independent of the oxidation state of the other cytochrome c. These observations support a model with two monoheme cytochromes c which are symmetrically arranged around the reaction center core. From the ratio of menaquinone-7 to the bacteriochlorophyll pigment absorbing at 663 nm, it was estimated that our preparations contain 0.6-1.2 menaquinone-7 molecules per reaction center. However, no transient signal due to menaquinone could be observed between 360 and 450 nm in the time window from 10 ns to 4 micros. No recombination reaction between the primary partners P840(+) and A(0)(-) could be detected under normal conditions. Such a recombination was observed (t(1/2) approximately 19 ns) under highly reducing conditions or after accumulation of three electrons on the acceptor side during a series of flashes, showing that the secondary acceptors can stabilize three electrons. From our data, there is no evidence for involvement of menaquinone in charge separation in the reaction center of green sulfur bacteria.
Light-induced FTIR difference spectra of P840 upon its oxidation (P840+/P840) have been measured with the reaction center complex from the green sulfur bacterium Chlorobium tepidum. A broad band centered near 2500 cm-1 was observed in P840+, which is comparable to the band near 2600 cm-1 previously observed in P870+ of purple bacteria and assigned to the electronic transition in the bacteriochlorophyll a (BChla) dimer (Breton et al. (1992) Biochemistry 31, 7503-7510]. The intensity of this electronic band found in P840+ was about the same as that in P870+. The P840+ spectrum also showed several intensified vibrational modes, which are characteristic of the P870+ spectrum as well. These similar features of the electronic transition and the intensified lines indicate that P840+ is a BChla dimer whose electronic structure is similar to P870+. Based on the previous theoretical works, the possibility that P840+ has an asymmetric structure as P870+ was suggested. Also, two strong positive bands at 1707 and 1694 cm-1 probably assigned to the keto C9 = O stretching modes of P840+ were observed in the P840+/P840 spectrum. Three different interpretations are possible for the presence of the two C9 = O bands: (i) P840+ is an asymmetric dimer cation. (ii) P840+ has a symmetric structure, and the time constant of positive charge exchange between the two BChla molecules coincides with that of IR spectroscopy (10-13 s). (iii) The electric field produced by the positive charge on P840+ affects the C9 = O frequency of the neutral BChla in P840+ itself (when the charge exchange time is slower than the time scale of 10-13 s) or of a BChla in the close proximity of P840+. The negative bands at 1734 and 1684 cm-1 were assigned to the ester C10 = O and the keto C9 = O of neutral P840, respectively, both of which are free from hydrogen bonding. These results and interpretations regarding the structural symmetry and the molecular interactions of P840 and P840+ are discussed in the framework of the "homodimeric" reaction center of green sulfur bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.