B cell antigen receptor signals development, activation, proliferation, or apoptosis of B cells depending on their condition, and its proper signaling is critical for activation and homeostasis of the immune system. The B cell-restricted adaptor protein BASH (also termed BLNK͞SLP-65) is rapidly phosphorylated by the tyrosine kinase Syk after BCR ligation and binds to various signaling proteins. BASH structurally resembles SLP-76, which is essential for T cell development and T cell receptor signaling. To evaluate the role for BASH in B cell development and function in vivo, we disrupted BASH alleles in embryonic stem cells by means of homologous recombination and used these cells to complement lymphocyte-incompetent blastocysts from RAG2-deficient mice. In the resultant chimeric mice, T cell development was apparently normal, but B cell development was impaired, and a normally rare population of large preB cells expressing preB cell receptor dominated in the bone marrow in place of small preB cells, although they were mostly noncycling. In addition, the mature B cell populations in the periphery and the bone marrow profoundly decreased in size, as did B-1 cells in the peritoneal cavity, and serum Ig was severely reduced. The BASH-deficient B cells scarcely proliferated or up-regulated B7-2 in response to BCR ligation and poorly proliferated upon CD40 ligation or lipopolysaccharide stimulation. This phenotype indicates that BASH is critical for preB cell receptor signaling inducing proliferation of large preB cells and the following differentiation, for peripheral B cell maturation, and for BCR signaling inducing activation͞proliferation of B cells.
We previously demonstrated that artificial lymph nodes (aLNs) could be generated in mice by the implantation of stromal cell-embedded biocompatible scaffolds into their renal subcapsular spaces. T and B cell domains that form in aLNs have immune response functions similar to those of follicles of normal lymphoid tissue. In the present study, we show that the aLNs were transplantable to normal as well as SCID mice, where they efficiently induced secondary immune responses. Antigen-specific secondary responses were strongly induced in aLNs even 4 weeks after their transplantation.
The B cell adaptor containing src homology 2 domain (BASH; also termed BLNK or SLP-65), is crucial for B cell antigen receptor (BCR)-mediated activation, proliferation, and differentiation of B cells. BCR-mediated tyrosine-phosphorylation of BASH creates binding sites for signaling effectors such as phospholipase Cγ (PLCγ)2 and Vav, while the function of its COOH-terminal src homology 2 domain is unknown. We have now identified hematopoietic progenitor kinase (HPK)1, a STE20-related serine/threonine kinase, as a protein that inducibly interacts with the BASH SH2 domain. BCR ligation induced rapid tyrosine-phosphorylation of HPK1 mainly by Syk and Lyn, resulting in its association with BASH and catalytic activation. BCR-mediated activation of HPK1 was impaired in Syk- or BASH-deficient B cells. The functional SH2 domain of BASH and Tyr-379 within HPK1 which we identified as a Syk-phosphorylation site were both necessary for interaction of both proteins and efficient HPK1 activation after BCR stimulation. Furthermore, HPK1 augmented, whereas its kinase-dead mutant inhibited IκB kinase β (IKKβ) activation by BCR engagement. These results reveal a novel BCR signaling pathway leading to the activation of HPK1 and subsequently IKKβ, in which BASH recruits tyrosine-phosphorylated HPK1 into the BCR signaling complex.
Cytochrome P450nor (P450nor) is a heme enzyme which catalyzes NO reduction in denitrifying fungi. Threonine 243 (Thr243) of P450nor, which corresponds to the conserved threonine of monooxygenase cytochrome P450s, was replaced by 18 different amino acids via site-directed mutagenesis. The mutation did not seriously affect the optical absorption and the CD spectral properties of the enzyme in several oxidation, ligation, or spin states or the association rate constant for association of NO with the ferric iron, suggesting subtle and local structural changes in the heme environment on Thr243 mutation. However, the NO reduction activity was dramatically altered by Thr243 mutation, depending on the properties of the replaced amino acids. The catalytic activity, as measured by N2O formation and NADH consumption, was considerably retained on substitution of Asn, Ser, and Gly for Thr243, while it was profoundly decreased or lost on substitution with other amino acids. Kinetic analysis of the reaction of the enzymes with NO and NADH indicated that the decrease in the enzymatic activity upon Thr243 mutation mainly results from a decrease in the rate of reduction of the ferric-NO complex with NADH. On the basis of these enzymatic, kinetic, and spectroscopic results, as well as on the basis of the crystal data for native P450nor [Park, S.-Y., et al. (1997) Nat. Struct. Biol. 4, 827-832], the role of the conserved threonine at the 243 position in the NO reduction reaction by P450nor is discussed. We also discuss structural similarities or differences in the vicinity of the conserved threonine between P450nor and other monooxygenase P450s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.