Hyperspectral imaging sensors suffer from spectral and spatial misregistrations due to optical-system aberrations and misalignments. These artifacts distort spectral signatures that are specific to target objects and thus reduce classification accuracy. The main objective of this work is to detect and correct spectral and spatial misregistrations of hyperspectral images. The Hyperion visible near-infrared subsystem is used as an example. An image registration method based on phase correlation demonstrates the accurate detection of the spectral and spatial misregistrations. Cubic spline interpolation using estimated properties makes it possible to modify the spectral signatures. The accuracy of the proposed postlaunch estimation of the Hyperion characteristics is comparable to that of the prelaunch measurements, which enables the accurate onboard calibration of hyperspectral sensors.
We have been developing a microsatellite based on our concept of a satellite to meet the potential needs of challenging space-science missions that only a microsatellite can accomplish. A binary black hole (BBH) is a state in which two black holes at the center of their respective galaxies are closing the orbital distance around each other. Observations using conventional large satellites have obtained insufficient results for BBH exploration because the satellites cannot be engaged in the long-term and concentrated observation of astral body such as BBH which is not established the existence. Microsatellites have two advantages; namely, they can be occupied with long-term observation, and they have a low-cost and short-term development compared with large satellites. Thus, we can possibly program a challenging mission for a microsatellite, even with a certain risk. We implemented two key technologies on our microsatellite named ORbiting Binary black-hole Investigation Satellite (ORBIS), namely, a Distributed Architecture with a Common Signboard System and mission-equipment space for astronomical observation equipment. The specifications and progress of each subsystem are reported in this paper, along with an outline and the current status of the ORBIS development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.