In this study, we prepared injectable collagen microspheres for the sustained delivery of recombinant human vascular endothelial growth factor (rhVEGF) for tissue engineering. Collagen solution was formed into microspheres under a water-in-oil emulsion condition, followed by crosslinking with water-soluble carbodiimide. Various sizes of collagen microspheres in the range of 1-30 mum diameters could be obtained by controlling the surfactant concentration and rotating speed of the emulsified mixture. Particle size proportionally decreased with increasing the rotating speed (1.8 mum per 100 rpm increase in the range of 300-1,200 rpm) and surfactant concentration (3.1 mum per 0.1% increase in the range of 0.1-0.5%). The collagen microspheres showed a slight positive charge of 8.86 and 3.15 mV in phosphate-buffered saline and culture medium, respectively. Release study showed the sustained release of rhVEGF for 4 weeks. Released rhVEGF was able to induce capillary formation of human umbilical vein endothelial cells, indicating the maintenance of rhVEGF bioactivity after release. In conclusion, the results suggest that the collagen microspheres have potential for sustained release of rhVEGF.
The reduction of the laser-induced choroidal neovascularizations and preservation of macular function in monkey by intravitreal vasohibin-1 suggest that it should be considered for suppressing choroidal neovascularizations in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.