PurposeThe evaluation of all ribs on thin-slice CT images is time consuming and it can be difficult to accurately assess the location and type of rib fracture in an emergency. The aim of our study was to develop and validate a convolutional neural network (CNN) algorithm for the detection of acute rib fractures on thoracic CT images and to investigate the effect of the CNN algorithm on radiologists' performance. Methods The dataset for development of a CNN consisted of 539 thoracic CT scans with 4906 acute rib fractures. A threedimensional faster region-based CNN was trained and evaluated by using tenfold cross-validation. For an observer performance study to investigate the effect of CNN outputs on radiologists' performance, 30 thoracic CT scans (28 scans with 90 acute rib fractures and 2 without rib fractures) which were not included in the development dataset were used. Observer performance study involved eight radiologists who evaluated CT images first without and second with CNN outputs. The diagnostic performance was assessed by using figure of merit (FOM) values obtained from the jackknife free-response receiver operating characteristic (JAFROC) analysis. Results When radiologists used the CNN output for detection of rib fractures, the mean FOM value significantly increased for all readers (0.759 to 0.819, P = 0.0004) and for displaced (0.925 to 0.995, P = 0.0028) and non-displaced fractures (0.678 to 0.732, P = 0.0116). At all rib levels except for the 1st and 12th ribs, the radiologists' true-positive fraction of the detection became significantly increased by using the CNN outputs.
ConclusionThe CNN specialized for the detection of acute rib fractures on CT images can improve the radiologists' diagnostic performance regardless of the type of fractures and reader's experience. Further studies are needed to clarify the usefulness of the CNN for the detection of acute rib fractures on CT images in actual clinical practice.
We report a 3-month-old boy with Kasabach-Merritt Syndrome (KMS) with an occipital haemangioma who underwent successful transarterial embolization (TAE) with cellulose porous beads (CPBs). As his response to steroids and coil embolization was inadequate, we performed TAE with CPBs, carefully preventing their migration via dangerous anastomoses. The tumour blush decreased, there were no complications, all coagulation tests were immediately normalized and the tumor size decreased gradually. TAE with CPBs is useful for the treatment of KMS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.