This paper reports the results of the miniaturization design of a permanent-magnet synchronous motor, for which an optimal design technique based on thermomagnetic field coupling analysis is used. We derived the optimal solutions for various motor flatness ratios and determined the relationship between the motor size and the flatness ratio. For motors with different flatness ratios, we calculated the speed-torque characteristics by considering the voltage, temperature rise, and demagnetization limits and compared them. Moreover, we manufactured and tested the smallest designed motor. The measured temperature rises demonstrated the high accuracy of the proposed miniaturization design.
A straightforward solution for minimizing the cost of major materials used in motors, such as permanent magnets and silicon steel sheets, is to reduce the motor size as far as possible. However, there is a trade-off between the motor size and temperature rise in the motor that should be taken into account while reducing the motor size. For achieving this, we have been developing an optimal design method based on a combination of a thermo-magnetic field coupling analysis and a direct search algorithm. This paper reports the details of this design method. An outer-rotor, multipole permanent-magnet synchronous motor is the test motor. The results of the torque-density-maximization problem involving constraints on the terminal voltage, coil-temperature rise, and demagnetization of the magnet are shown. The usefulness of our method is also demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.