The purpose of this study was to evaluate the influence of heating, cast bonding, and subsequent polishing procedures on attractive force of magnetic attachments. Two magnetic attachment systems with keepers of different chemical compositions (Hicorexslim 3013, 447J1; Magfit EX400, AUM20) were employed. Keepers examined were: (1) untreated; (2) heated; (3) castbonded with Ag-Pd alloy; (4) cast-bonded with Ag-Pd alloy and polished; (5) cast-bonded with gold alloy; and (6) cast-bonded with gold alloy and polished. Attractive force was determined with a force gauge, and surface structure was evaluated with scanning laser and electron microscopes. Attractive force of the Hicorex system was reduced by cast bonding, whereas that of the Magfit system was reduced by both heating and cast bonding. However, attractive force of both systems was somewhat recovered through the polishing process. Based on the findings of this study, it was suggested that careful polishing after cast bonding was indispensable to the recovery of attractive force for both attachment systems.
The purpose of this study was to evaluate the effects of functional monomers contained in the primers, as well as alumina particle abrasion on bonding between stainless steel and acrylic resin. SUS XM27 steel was primed with one of the following materials; Alloy Primer, Estenia Opaque Primer, M. L. Primer, and Super-Bond Liquid. Steel disks were either ground flat or alumina-blasted, primed with one of the four agents, and bonded with an acrylic resin (Unifast Trad). Bond strength was determined both before and after thermocycling (2,000 or 20,000 cycles). Among the four priming agents, the Alloy Primer and Estenia O p a q u e P r i m e r, b o t h o f w h i c h c o n t a i n 1 0 -methacryloyloxydecyl dihydrogen phosphate (MDP), exhibited better bonding performance than the others. Alumina air-borne particle abrasion considerably improved the durability of bonding between the steel and the resin material. It can be concluded that alumina blasting followed by priming with an MDP agent is recommended for bonding the resin and SUS XM27 steel. (J. Oral Sci. 49,[191][192][193][194][195] 2007)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.