γ-Linolenic acid (GLA) is a physiologically valuable fatty acid, and is desired as a medicine, but a useful method available for industrial purification has not been established. Thus, large-scale purification was attempted by a combination of enzymatic reactions and distillation. An oil containing 45% GLA (GLA45 oil) produced by selective hydrolysis of borage oil was used as a starting material. GLA45 oil was hydrolyzed at 35°C in a mixture containing 33% water and 250 U/g-reaction mixture of Pseudomonas sp. lipase; 91.5% hydrolysis was attained after 24 h. Film distillation of the dehydrated reaction mixture separated free fatty acids (FFA; acid value 199) with a recovery of 94.5%. The FFA were selectively esterified at 30°C for 16 h with two molar equivalents of lauryl alcohol and 50 U/g of Rhizopus delemar lipase in a mixture containing 20% water. The esterification extent was 52%, and the GLA content in the FFA fraction was raised to 89.5%. FFA and lauryl esters were not separated by film distillation, but the FFA-rich fraction contaminated with 18% lauryl esters was recovered by simple distillation. To further increase the GLA content, the FFA-rich fraction was selectively esterified again under similar conditions. As a result, the GLA content in the FFA fraction was raised to 97.3% at 15.2% esterification. After simple distillation of the reaction mixture, lauryl esters contaminating the FFA-rich fraction were completely eliminated by urea adduct fractionation. When 10 kg of GLA45 oil was used as a starting material, 2.07 kg of FFA with 98.6% GLA was obtained with a recovery of 49.4% of the initial content. JAOCS 75, 1539-1543 (1998).
Embedded extrusion printing provides a versatile platform for fabricating complex hydrogel-based biological structures with living cells. However, the time-consuming process and rigorous storage conditions of current support baths hinder their commercial application. This work reports a novel "out-of-the-box" granular support bath based on chemically crosslinked cationic polyvinyl alcohol (PVA) microgels, which is ready to use by simply dispersing the lyophilized bath in water. Notably, with ionic modification, PVA microgels yield reduced particle size, uniform distribution, and appropriate rheological properties, contributing to high-resolution printing. Following by the lyophilization and re-dispersion process, ion-modified PVA baths recover to its original state, with unchanged particle size, rheological properties, and printing resolution, demonstrating its stability and recoverability. Lyophilization facilitates the long-term storage and delivery of granular gel baths, and enables the application of "out-of-the-box" support materials, which will greatly simplify experimental procedures, avoid labor-intensive and time-consuming operations, thus accelerating the broad commercial development of embedded bioprinting.
The use of three-dimensional (3D) printing technology is expanding in various fields. The application of 3D printing is expected to increase in the pharmaceutical industry after 3D-printed tablets were approved by the U.S. Food and Drug Administration (FDA). Fused deposition modeling (FDM), a type of 3D printing, has been extensively studied for the manufacturing of tablets. A drug-loaded polymer filament, the ink of FDM 3D printers, can be prepared using the hot melt extrusion method or a simple drug-soaking method. In the present study, we investigate the influence of the experimental conditions on the loading of curcumin (model drug with fluorescence) into a polyvinylalcohol polymer filament using the soaking method. We show that organic solvent type (isopropanol, methanol, acetone, and ethanol), temperature (25 and 80°C), and drug concentration (2-333 mg/mL) greatly affect drug loading. Around 5% curcumin can be incorporated into the polyvinylalcohol filament using the soaking method. The drug dissolution from 3D-printed tablets depends on the drug content in the polymer filament. The incorporation of a higher amount of curcumin, which has poor water solubility, greatly delays drug dissolution. These results provide useful information on the preparation of 3D-printed tablets using a drug-loaded polymer filament obtained with the soaking method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.