Soybeans (Glycine max (L.) Merr.) and certain other legumes excrete isoflavones from their roots, which participate in plantmicrobe interactions such as symbiosis and as a defense against infections by pathogens. In G. max, the release of free isoflavones from their conjugates, the latent forms, is mediated by an isoflavone conjugate-hydrolyzing -glucosidase. Here we report on the purification and cDNA cloning of this important -glucosidase from the roots of G. max seedlings as well as related phylogenetic and cellular localization studies. The purified enzyme, isoflavone conjugate-hydrolyzing -glucosidase from roots of G. max seedling (GmICHG), is a homodimeric glycoprotein with a subunit molecular mass of 58 kDa and is capable of directly hydrolyzing genistein 7-O-(6؆-O-malonyl--D-glucoside) to produce free genistein (k cat , 98 s ؊1 ; K m , 25 M at 30°C, pH 7.0). GmICHG cDNA was isolated based on the amino acid sequence of the purified enzyme. GmICHG cDNA was abundantly expressed in the roots of G. max seedlings but only negligibly in the hypocotyl and cotyledon. An immunocytochemical analysis using anti-GmICHG antibodies, along with green fluorescent protein imaging analyses of Arabidopsis cultured cells transformed by the GmICHG:GFP fusion gene, revealed that the enzyme is exclusively localized in the cell wall and intercellular space of seedling roots, particularly in the cell wall of root hairs. A phylogenetic analysis revealed that GmICHG is a member of glycoside hydrolase family 1 and can be co-clustered with many other leguminous -glucosidases, the majority of which may also be involved in flavonoid-mediated interactions of legumes with microbes.
We screened for proteins with specific binding activity to Holliday junction DNA from the hyperthermophilic archaeon Pyrococcus furiosus and found a protein that has specific affinity for DNA with a branched structure, like a three-way or four-way junction. The protein was identified as one of the two inteins encoded in the gene for ribonucleotide reductase (RNR) by gene cloning. These two inteins were spliced out from the precursor protein as polypeptides with molecular weights of 53.078 and 43.976 kDa, respectively. The amino acid sequences of these inteins have two copies of the LAGLIDADG motif, which is found in the site-specific DNA endonucleases. The purified proteins actually cleaved double-stranded DNA with the sequence of the intein(-)allele, and, therefore, they were designated PI- Pfu I and PI- Pfu II. They generate a 4 bp 3'-OH overhang with a 5'-phosphate, like other known homing endonucleases originating from inteins. The optimal conditions of the DNA cleavage reaction, including temperature, pH, and concentrations of KCl and MgCl(2), have been determined. The high affinity for junction DNA of PI- Pfu I was confirmed using the purified protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.