Recent progress in genome-wide expression analysis has identified hundreds of circadian genes not only in the suprachiasmatic nucleus (the mammalian master clock) but also in peripheral tissues, such as heart, liver and kidney of mammals. Glucocorticoid is thought to be a circadian time cue for mammalian peripheral clocks. To identify the genes of which the circadian expression is regulated by endogenous glucocorticoids, we performed DNA microarray analysis using hepatic RNA from adrenalectomized (ADX) and sham-operated mice. We identified 169 genes that fluctuated between day and night in the livers of the sham-operated mice. Among these, 100 lost circadian rhythmicity in ADX mice. These included the genes for key enzymes of liver metabolic functions, such as glucokinase, HMG-CoA reductase and glucose-6-phosphatase. The circadian expression of Lpin1, FKBP51 and S-adenosyl methionine decarboxylase was also abolished in the ADX mice. On the other hand, although the circadian expression of clock or clock-related genes, such as mPer2, DBP, E4BP4, mDec1, Usp2 and Wee1 remained almost totally intact in the liver of ADX mice, it was extremely damped in homozygous Clock mutant mice. The present findings suggested that one type of hepatic circadian genes in mice is transcriptionally regulated by core components of the circadian clock, such as CLOCK and BMAL1, and that the other depends on the adrenal gland.
Diabetes is associated with an excess risk of cardiac events, and one of the risk factors for infarction is the elevated-levels of plasminogen activator inhibitor-1 (PAI-1). To evaluate how the molecular clock mechanism is involved in the diabetes-induced circadian augmentation of PAI-1 gene expression, we examined the expression profiles of PAI-1 mRNA in the hearts of Clock mutant mice with streptozotocin-induced diabetes. Circadian expression of PAI-1 mRNA was blunted to low levels under both normal and diabetic conditions in Clock mutant mice, although the expression rhythm was augmented in diabetic wild-type (WT) mice. Furthermore, plasma PAI-1 levels became significantly higher in WT mice than in Clock mutant mice after STZ administration. Our results suggested that the circadian clock component, CLOCK, is involved in the diabetes-induced circadian augmentation of PAI-1 expression in the mouse heart.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.