Electrochemical reversibility and fast bimolecular exchange reaction found for VO(salen) gave rise to a highly efficient redox mediation to enhance the photocurrent of a dye-sensitized solar cell, leading to an excellent photovoltaic performance with a conversion efficiency of 5.4%. A heterogeneous electron-transfer rate constant at an electrode (k0) and a second-order rate constant for an electron self-exchange reaction (k(ex)) were proposed as key parameters that dominate the charge transport property, which afforded a novel design concept for the mediators based on their kinetic aspects.
Organic-based solar cells potentially offer a photovoltaic module with low production costs and low hazard risk of the components. We report organic dye-sensitized solar cells, fabricated with molecular designed indoline dyes in conjunction with highly reactive but robust nitroxide radical molecules as redox mediator in a quasi-solid gel form of the electrolyte. The cells achieve conversion efficiencies of 10.1% at 1 sun, and maintain the output performance even under interior lighting. The indoline dyes, customized by introducing long alkyl chains, specifically interact with the radical mediator to suppress a charge-recombination process at the dye interface. The radical mediator also facilitates the charge-transport with remarkably high electron self-exchange rate even in the quasi-solid state electrolyte to lead to a high fill factor.
A ferrocenylimidazolium salt was found to be an efficient iodine/iodide-free redox mediator for a dye-sensitized solar cell (DSSC), giving rise to a photoconversion efficiency of 4% under optimized electrolyte conditions. The excellent redox mediation process was ascribed not only to the electrochemically reversible nature of the molecule with a large heterogeneous electron-transfer rate constant in the order of 10−2 cm s−1 at electrodes, but also to an exceptionally high solubility up to 2.7 M to produce a large redox gradient in the mediation layer, thus allowing the increase of diffusion-limited current. The high solubility originating from the imidazolium group in the mediator molecule was reminiscent of ionic liquids, which are typically characterized by small absorption coefficients in a visible region. These properties provided a mass-transfer-based concept of molecular design for organic redox mediators in DSSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.