Next‐generation sequencing ( NGS ) of tumor tissue (ie, clinical sequencing) can guide clinical management by providing information about actionable gene aberrations that have diagnostic and therapeutic significance. Here, we undertook a hospital‐based prospective study ( TOP ‐ GEAR project, 2nd stage) to investigate the feasibility and utility of NGS ‐based analysis of 114 cancer‐associated genes (the NCC Oncopanel test). We examined 230 cases (comprising more than 30 tumor types) of advanced solid tumors, all of which were matched with nontumor samples. Gene profiling data were obtained for 187 cases (81.3%), 111 (59.4%) of which harbored actionable gene aberrations according to the Clinical Practice Guidelines for Next Generation Sequencing in Cancer Diagnosis and Treatment (Edition 1.0) issued by 3 major Japanese cancer‐related societies. Twenty‐five (13.3%) cases have since received molecular‐targeted therapy according to their gene aberrations. These results indicate the utility of tumor‐profiling multiplex gene panel testing in a clinical setting in Japan. This study is registered with UMIN Clinical Trials Registry ( UMIN 000011141).
The origin and spread of novel agronomic traits during crop domestication are complex events in plant evolution. Wild rice (Oryza rufipogon) has red grains due to the accumulation of proanthocyanidins, whereas most cultivated rice (Oryza sativa) varieties have white grains induced by a defective allele in the Rc basic helix-loop-helix (bHLH) gene. Although the events surrounding the origin and spread of black rice traits remain unknown, varieties with black grains due to anthocyanin accumulation are distributed in various locations throughout Asia. Here, we show that the black grain trait originated from ectopic expression of the Kala4 bHLH gene due to rearrangement in the promoter region. Both the Rc and Kala4 genes activate upstream flavonol biosynthesis genes, such as chalcone synthase and dihydroflavonol-4-reductase, and downstream genes, such as leucoanthocyanidin reductase and leucoanthocyanidin dioxygenase, to produce the respective specific pigments. Genome analysis of 21 black rice varieties as well as red-and white-grained landraces demonstrated that black rice arose in tropical japonica and its subsequent spread to the indica subspecies can be attributed to the causal alleles of Kala4. The relatively small size of genomic fragments of tropical japonica origin in some indica varieties indicates that refined introgression must have occurred by natural crossbreeding in the course of evolution of the black trait in rice.
SUMMARY1. When a Ca2+ chelator, bis (0-aminophenoxy)ethane-NNN'N-tetraacetic acid (BAPTA), was loaded into the presynaptic nerve terminal of the frog neuromuscular junction (NMJ), facilitation, measured as an increase in endplate potential (EPP) amplitudes during a train of ten stimulations at 100 Hz, was greatly decreased within 20 min of BAPTA-AM (the acetoxymethyl ester of BAPTA) perfusion, and remained at a constant low level thereafter, suggesting that [Ca2+]i at the presynaptic nerve terminal was buffered by BAPTA.2. Detailed examination of the two components of facilitation of EPP amplitude in the BAPTA-loaded NMJs showed that the fast component was lost almost completely, while the slow component was unaffected by loaded BAPTA. Augmentation and potentiation were also unaffected by BAPTA.3. Under external Ca2+-free conditions (with 1 mM-EGTA), both augmentation and potentiation of miniature endplate potential (MEPP) frequency were clearly observed after tetanic stimulation in the normal NMJ, and were also unaffected by loaded BAPTA. 4. The above findings strongly support the residual Ca2+ hypothesis for the fast component of facilitation, and suggest that the three slower processes (the slow component of facilitation, augmentation and potentiation) occur independently of [Ca2+]i. This Ca2+ independence was supported by the fact that facilitation and potentiation have multiplicative effects on the amount of release.5. The quantal content of the first EPP in the train remained unchanged throughout the time course of BAPTA loading for most NMJs. This suggests that [Ca2+]
SUMMARY1. Application of an amino-residue-modifying reagent, 2,4,6-trinitrobenzene-1-sulphonic acid (TNBS), to the frog neuromuscular junction in high-magnesium Ringer solution rapidly increased both the amplitude of nerve-evoked end-plate potentials (EPPs) and the frequency of miniature end-plate potentials (MEPPs). These showed a similar initial time course and reached a maximum 3-7 min and about 10 min, respectively, after the start of application of 2 mM-TNBS. Then, the EPP amplitude decreased, while the MEPP frequency maintained its plateau value. The increase in transmitter release and the decrease in EPP amplitude by TNBS may have been due to different modes of action.2. The distribution of MEPP amplitude was unchanged by TNBS treatment. 3. The carbachol-induced postsynaptic potential and the extracellularly recorded presynaptic action current were not affected by TNBS treatment for up to 30 min, indicating that the change in EPP amplitude produced by TNBS was not due to either a postsynaptic effect or a change in action potential at the presynaptic terminal.4. The frequency of MEPPs was increased by TNBS application even when Ca2+ was omitted from the external Ringer solution or when a specific calcium channel blocker, synthetic o-conotoxin, was added. This indicates that Ca2+ inflow to the nerve terminal is not necessary for TNBS action.5. When a calcium chelator, BAPTA, was loaded into the presynaptic nerve terminal, the facilitation of EPPs by trains of nerve stimuli was scarcely observed. This suggested that the cytosolic free Ca2+ in the presynaptic terminal was buffered by BAPTA. Under this condition, the amplitudes of EPPs were increased by TNBS application to the same extent as in the control without BAPTA, but were accompanied by little facilitation. The MEPP frequency was also increased by TNBS to the same extent as in the control. These results suggest strongly that augmentation of transmitter release by TNBS was not due to an increase in cytosolic Ca2+ concentration.6. These observations suggest that TNBS might react with specific protein(s) on the outer surface of the presynaptic membrane and accelerate the exocytosis of synaptic vesicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.