Ataxia-telangiectasia (A-T) patients occasionally develop diabetes mellitus. However, only limited attempts have been made to gain insight into the molecular mechanism of diabetes mellitus development in A-T patients. We found that Atm mice were insulin resistant and possessed less subcutaneous adipose tissue as well as a lower level of serum adiponectin than Atm mice. Furthermore, in vitro studies revealed impaired adipocyte differentiation in Atm cells caused by the lack of induction of C/EBPα and PPARγ, crucial transcription factors involved in adipocyte differentiation. Interestingly, ATM was activated by stimuli that induced differentiation, and the binding of ATM to C/EBPβ and p300 was involved in the transcriptional regulation of C/EBPα and adipocyte differentiation. Thus, our study sheds light on the poorly understood role of ATM in the pathogenesis of glucose intolerance in A-T patients and provides insight into the role of ATM in glucose metabolism.
SummaryMyelomeningocele (MMC) is a congenital disease without genetic abnormalities. Neurological symptoms are irreversibly impaired after birth, and no effective treatment has been reported to date. Only surgical repairs have been reported so far. In this study, we performed antenatal treatment of MMC with an artificial skin using induced pluripotent stem cells (iPSCs) generated from a patient with Down syndrome (AF-T21-iPSCs) and twin-twin transfusion syndrome (AF-TTTS-iPSCs) to a rat model. We manufactured three-dimensional skin with epidermis generated from keratinocytes derived from AF-T21-iPSCs and AF-TTTS-iPSCs and dermis of human fibroblasts and collagen type I. For generation of epidermis, we developed a protocol using Y-27632 and epidermal growth factor. The artificial skin was successfully covered over MMC defect sites during pregnancy, implying a possible antenatal surgical treatment with iPSC technology.
SUMMARYMyelomeningocele (MMC) is a congenital disease without genetic abnormalities. Neurological symptoms are irreversibly impaired after birth, and no effective treatment has been reported to date. Only surgical repairs have been reported so far. In this study, we performed antenatal treatment of MMC with an artificial skin using induced pluripotent stem cells (iPSCs) generated from a patient with Down syndrome (AF-T21-iPSCs) and twin-twin transfusion syndrome (AF-TTTS-iPSCs) to a rat model. We manufactured three-dimensional skin with epidermis generated from keratinocytes derived from AF-T21-iPSCs and AF-TTTS-iPSCs and dermis of human fibroblasts and collagen type I. For generation of epidermis, we developed a protocol using Y-27632 and epidermal growth factor. The artificial skin was successfully covered over MMC defect sites during pregnancy, implying a possible antenatal surgical treatment with iPSC technology.
In utero hematopoietic cell transplantation (IUHCT) has been performed in Mucopolysaccharidosis Type VII (MPSVII) mice, but a lifelong engraftment of allogeneic donor cells has not been achieved. In this study, we sought to confirm a lifelong engraftment of allogeneic donor cells immunologically matched to the mother and to achieve partial rescue of phenotypes in the original MPSVII strain through IUHCT by intravenous injection. We performed in vitro fertilization in a MPSVII murine model and transferred affected embryos to ICR/B6-GFP surrogate mothers in cases where fetuses receiving IUHCT were all homozygous. Lineage-depleted cells from ICR/B6-GFP mice were injected intravenously at E14.5. Chimerism was confirmed by flow cytometry at 4 weeks after birth, and β-glucuronidase activity in serum and several phenotypes were assessed at 8 weeks of age or later. Donor cells in chimeric mice from ICR/B6-GFP mothers were detected at death, and were confirmed in several tissues including the brains of sacrificed chimeric mice. Although the serum enzyme activity of chimeric mice was extremely low, the engraftment rate of donor cells correlated with enzyme activity. Furthermore, improvement of bone structure and rescue of reproductive ability were confirmed in our limited preclinical study. We confirmed the lifelong engraftment of donor cells in an original immunocompetent MPSVII murine model using intravenous IUHCT with cells immunologically matched to the mother without myeloablation, and the improvement of several phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.