BackgroundChronic kidney disease (CKD) is increasingly being recognized as a predictor for both end-stage renal disease and cardiovascular disease. The present study, conducted on individuals from a community in Arita, Japan, was designed to evaluate biomarkers that can be used to determine the associated factors for CKD.MethodsThis study involved 1554 individuals. Kidney function was evaluated in terms of the creatinine-based estimated glomerular filtration rate (eGFR), which was determined using the Modification of Diet in Renal Disease equation. Low eGFR was defined as eGFR < 60 mL/min per 1.73 m2. The concentration of both urinary albumin and urinary type IV collagen were measured.ResultsIn the younger participants (age, <65 years), the odds ratio (95% confidence interval [CI]) of low eGFR was 1.17 (1.02 to 1.34) for each 1 year older age, 6.28 (1.41 to 28.03) for urinary albumin creatinine ratio (ACR) over 17.9 mg/g and 9.43 (2.55 to 34.91) for hyperlipidemia. On the other hand, among the elderly participants (age, ≥ 65 years), the odds ratio (95% CI) of low eGFR was 2.97 (1.33 to 6.62) for gender, 1.62 (1.06 to 2.50) for hypertension and 1.97 (1.19 to 3.28) for hyperlipidemia. Urinary type IV collagen creatinine ratio was not identified as an associated factor for low eGFR.ConclusionIn this present cross-sectional community-based study, ACR is associated with CKD, which was defined as an eGFR of less than 60 mL/min per 1.73 m2, in the younger participants but not in the older participants.
Diabetic nephropathy (DN) is the major cause of end-stage kidney disease, but early biomarkers of DN risk are limited. Herein we examine urinary IgG4 and Smad1 as additional early DN biomarkers. We recruited 815 patients with type 2 diabetes; 554 patients fulfilled the criteria of an estimated glomerular filtration rate (eGFR) >60 mL/min and no macroalbuminuria at baseline, with follow-up for 5 years. Patients without macroalbuminuria were also recruited for renal biopsies. Urinary IgG4 and Smad1 were determined by enzyme-linked immunoassays using specific antibodies. The specificity, sensitivity, and reproducibility were confirmed for each assay. Increased urinary IgG4 was significantly associated with lower eGFR. The level of urinary IgG4 also significantly correlated with surface density of peripheral glomerular basement membrane (Sv PGBM/Glom), whereas Smad1 was associated with the degree of mesangial expansion-both classic pathological findings in DN. Baseline eGFR did not differ between any groups; however, increases in both urinary IgG4 and Smad1 levels at baseline significantly predicted later development of eGFR decline in patients without macroalbuminuria. These data suggest that urinary IgG4 and Smad1 at relatively early stages of DN reflect underlying DN lesions and are relevant to later clinical outcomes.
Urinary type IV collagen (U-Col4) and albumin excretion is evaluated to monitor the development of diabetic kidney disease. However, U-Col4 excretion in the general population without diabetes has not yet been fully elucidated. In this study, 1067 participants without diabetes and with urinary albumin-creatinine ratio <300 mg/gCr (normo- or microalbuminuria) who underwent an annual health examination in 2004 were enrolled and observed for 5 years. They were divided according to the amount of U-Col4 or urinary albumin excreted. The decline in estimated glomerular filtration rate (eGFR) was calculated. In participants with eGFR ≥80 mL/min, abnormal U-Col4 excretion was indicated as a significant independent risk factor for 10% eGFR change per year, which is one of the prognostic factors for the development of end-stage kidney disease. Moreover, in contrast to urinary albumin excretion, U-Col4 excretion was not related to age or kidney function, suggesting that some individuals with abnormal U-Col4 excretion can have an independent hidden risk for the development of kidney dysfunction. In conclusion, it is important to measure U-Col4 excretion in the general population without diabetes to determine changes in renal features in every individual and help detect future complications such as diabetic kidney disease. If U-Col4 excretion is abnormal, kidney manifestation should be carefully followed up, even if the kidney function and urinalysis findings are normal.
Background: Trophoblast glycoprotein (Tpbg), a 72-kDa transmembrane glycoprotein, is known to regulate the phenotypes of epithelial cells by modifying actin organization and cell motility. Recently, a microarray study showed that Tpbg is upregulated in Thy1 glomerulonephritis (Thy1 GN). We hypothesized that Tpbg regulates cytoskeletal rearrangement and modulates phenotypic alteration in podocytes under pathological conditions. Methods: We examined Tpbg expression in Thy1 GN and Tpbg function in mouse podocytes. Results: We demonstrated that Tpbg is upregulated in the injured podocytes of Thy1 GN. In vitro, immunofluorescence studies revealed that Tpbg colocalized with the focal adhesion protein, vinculin, in parallel with stress fiber formation. This colocalization was observed even when actin filaments were depolymerized with cytochalasin D. Tpbg localization at focal adhesions was induced by dominant-active RhoA and suppressed by the ROCK1 inhibitor Y-26732. In addition, transforming growth factor-β increased Tpbg expression at focal adhesions concurrently with rearrangement of stress fibers. Stress fiber formation was suppressed in differentiated podocytes transfected with full-length Tpbg. Furthermore, knockdown of Tpbg using small interfering RNA decreased podocyte motility. Conclusion:Our findings suggest a novel role of Tpbg in the phenotypic alteration of injured podocytes, and we accordingly propose a new mechanism of glomerular injury in glomerulonephritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.